MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcda Structured version   Visualization version   GIF version

Theorem infcda 9030
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infcda ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵))

Proof of Theorem infcda
StepHypRef Expression
1 unnum 9022 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
213adant3 1081 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ∈ dom card)
3 ssun2 3777 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
4 ssdomg 8001 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
52, 3, 4mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴𝐵))
6 cdadom2 9009 . . . . 5 (𝐵 ≼ (𝐴𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴𝐵)))
75, 6syl 17 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴𝐵)))
8 cdacomen 9003 . . . 4 (𝐴 +𝑐 (𝐴𝐵)) ≈ ((𝐴𝐵) +𝑐 𝐴)
9 domentr 8015 . . . 4 (((𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴𝐵)) ∧ (𝐴 +𝑐 (𝐴𝐵)) ≈ ((𝐴𝐵) +𝑐 𝐴)) → (𝐴 +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐴))
107, 8, 9sylancl 694 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐴))
11 simp3 1063 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
12 ssun1 3776 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
13 ssdomg 8001 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
142, 12, 13mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴𝐵))
15 domtr 8009 . . . . 5 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → ω ≼ (𝐴𝐵))
1611, 14, 15syl2anc 693 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴𝐵))
17 infcdaabs 9028 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ 𝐴 ≼ (𝐴𝐵)) → ((𝐴𝐵) +𝑐 𝐴) ≈ (𝐴𝐵))
182, 16, 14, 17syl3anc 1326 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) +𝑐 𝐴) ≈ (𝐴𝐵))
19 domentr 8015 . . 3 (((𝐴 +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐴) ∧ ((𝐴𝐵) +𝑐 𝐴) ≈ (𝐴𝐵)) → (𝐴 +𝑐 𝐵) ≼ (𝐴𝐵))
2010, 18, 19syl2anc 693 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴𝐵))
21 uncdadom 8993 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵))
22213adant3 1081 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵))
23 sbth 8080 . 2 (((𝐴 +𝑐 𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴 +𝑐 𝐵)) → (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵))
2420, 22, 23syl2anc 693 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037  wcel 1990  cun 3572  wss 3574   class class class wbr 4653  dom cdm 5114  (class class class)co 6650  ωcom 7065  cen 7952  cdom 7953  cardccrd 8761   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  alephadd  9399
  Copyright terms: Public domain W3C validator