MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Visualization version   Unicode version

Theorem alephinit 8918
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 8915 . . . . 5  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
21bicomi 214 . . . 4  |-  ( A  e.  ran  aleph  <->  ( om  C_  A  /\  ( card `  A )  =  A ) )
32baib 944 . . 3  |-  ( om  C_  A  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
43adantl 482 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
5 onenon 8775 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  dom  card )
65adantr 481 . . . . . . 7  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  e.  dom  card )
7 onenon 8775 . . . . . . 7  |-  ( x  e.  On  ->  x  e.  dom  card )
8 carddom2 8803 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  x  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  x )  <->  A  ~<_  x ) )
96, 7, 8syl2an 494 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  <->  A  ~<_  x ) )
10 cardonle 8783 . . . . . . . 8  |-  ( x  e.  On  ->  ( card `  x )  C_  x )
1110adantl 482 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( card `  x
)  C_  x )
12 sstr 3611 . . . . . . . 8  |-  ( ( ( card `  A
)  C_  ( card `  x )  /\  ( card `  x )  C_  x )  ->  ( card `  A )  C_  x )
1312expcom 451 . . . . . . 7  |-  ( (
card `  x )  C_  x  ->  ( ( card `  A )  C_  ( card `  x )  ->  ( card `  A
)  C_  x )
)
1411, 13syl 17 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  ->  ( card `  A )  C_  x ) )
159, 14sylbird 250 . . . . 5  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( A  ~<_  x  -> 
( card `  A )  C_  x ) )
16 sseq1 3626 . . . . . 6  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  x  <->  A  C_  x ) )
1716imbi2d 330 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( ( A  ~<_  x  ->  ( card `  A )  C_  x )  <->  ( A  ~<_  x  ->  A  C_  x
) ) )
1815, 17syl5ibcom 235 . . . 4  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  =  A  -> 
( A  ~<_  x  ->  A  C_  x ) ) )
1918ralrimdva 2969 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  ->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
20 oncardid 8782 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  ~~  A )
21 ensym 8005 . . . . . . 7  |-  ( (
card `  A )  ~~  A  ->  A  ~~  ( card `  A )
)
22 endom 7982 . . . . . . 7  |-  ( A 
~~  ( card `  A
)  ->  A  ~<_  ( card `  A ) )
2320, 21, 223syl 18 . . . . . 6  |-  ( A  e.  On  ->  A  ~<_  ( card `  A )
)
2423adantr 481 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~<_  ( card `  A )
)
25 cardon 8770 . . . . . 6  |-  ( card `  A )  e.  On
26 breq2 4657 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  ~<_  x 
<->  A  ~<_  ( card `  A
) ) )
27 sseq2 3627 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  C_  x  <->  A  C_  ( card `  A ) ) )
2826, 27imbi12d 334 . . . . . . 7  |-  ( x  =  ( card `  A
)  ->  ( ( A  ~<_  x  ->  A  C_  x )  <->  ( A  ~<_  ( card `  A )  ->  A  C_  ( card `  A ) ) ) )
2928rspcv 3305 . . . . . 6  |-  ( (
card `  A )  e.  On  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) ) )
3025, 29ax-mp 5 . . . . 5  |-  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) )
3124, 30syl5com 31 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  ->  A  C_  ( card `  A
) ) )
32 cardonle 8783 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
3332adantr 481 . . . . . 6  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( card `  A )  C_  A )
3433biantrurd 529 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) ) )
35 eqss 3618 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
3634, 35syl6bbr 278 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
3731, 36sylibd 229 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  -> 
( card `  A )  =  A ) )
3819, 37impbid 202 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  <->  A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x ) ) )
394, 38bitrd 268 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115   Oncon0 5723   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator