![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aomclem7 | Structured version Visualization version GIF version |
Description: Lemma for dfac11 37632. (𝑅1‘𝐴) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
aomclem6.b | ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} |
aomclem6.c | ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) |
aomclem6.d | ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) |
aomclem6.e | ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} |
aomclem6.f | ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} |
aomclem6.g | ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) |
aomclem6.h | ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) |
aomclem6.a | ⊢ (𝜑 → 𝐴 ∈ On) |
aomclem6.y | ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) |
Ref | Expression |
---|---|
aomclem7 | ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aomclem6.b | . . 3 ⊢ 𝐵 = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ (𝑅1‘∪ dom 𝑧)((𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎) ∧ ∀𝑑 ∈ (𝑅1‘∪ dom 𝑧)(𝑑(𝑧‘∪ dom 𝑧)𝑐 → (𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏)))} | |
2 | aomclem6.c | . . 3 ⊢ 𝐶 = (𝑎 ∈ V ↦ sup((𝑦‘𝑎), (𝑅1‘dom 𝑧), 𝐵)) | |
3 | aomclem6.d | . . 3 ⊢ 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎)))) | |
4 | aomclem6.e | . . 3 ⊢ 𝐸 = {〈𝑎, 𝑏〉 ∣ ∩ (◡𝐷 “ {𝑎}) ∈ ∩ (◡𝐷 “ {𝑏})} | |
5 | aomclem6.f | . . 3 ⊢ 𝐹 = {〈𝑎, 𝑏〉 ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))} | |
6 | aomclem6.g | . . 3 ⊢ 𝐺 = (if(dom 𝑧 = ∪ dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) | |
7 | aomclem6.h | . . 3 ⊢ 𝐻 = recs((𝑧 ∈ V ↦ 𝐺)) | |
8 | aomclem6.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
9 | aomclem6.y | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1‘𝐴)(𝑎 ≠ ∅ → (𝑦‘𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | aomclem6 37629 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) We (𝑅1‘𝐴)) |
11 | fvex 6201 | . . 3 ⊢ (𝐻‘𝐴) ∈ V | |
12 | weeq1 5102 | . . 3 ⊢ (𝑏 = (𝐻‘𝐴) → (𝑏 We (𝑅1‘𝐴) ↔ (𝐻‘𝐴) We (𝑅1‘𝐴))) | |
13 | 11, 12 | spcev 3300 | . 2 ⊢ ((𝐻‘𝐴) We (𝑅1‘𝐴) → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
14 | 10, 13 | syl 17 | 1 ⊢ (𝜑 → ∃𝑏 𝑏 We (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ∅c0 3915 ifcif 4086 𝒫 cpw 4158 {csn 4177 ∪ cuni 4436 ∩ cint 4475 class class class wbr 4653 {copab 4712 ↦ cmpt 4729 E cep 5028 We wwe 5072 × cxp 5112 ◡ccnv 5113 dom cdm 5114 ran crn 5115 “ cima 5117 Oncon0 5723 suc csuc 5725 ‘cfv 5888 recscrecs 7467 Fincfn 7955 supcsup 8346 𝑅1cr1 8625 rankcrnk 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-sup 8348 df-r1 8627 df-rank 8628 |
This theorem is referenced by: aomclem8 37631 |
Copyright terms: Public domain | W3C validator |