Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac11 Structured version   Visualization version   GIF version

Theorem dfac11 37632
Description: The right-hand side of this theorem (compare with ac4 9297), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg 8497, despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.

This is definition (MC) of [Schechter] p. 141. EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.

A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Stefan O'Rear, 1-Jun-2015.)

Assertion
Ref Expression
dfac11 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Distinct variable group:   𝑥,𝑧,𝑓

Proof of Theorem dfac11
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8944 . . 3 (CHOICE ↔ ∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
2 raleq 3138 . . . . . 6 (𝑎 = 𝑥 → (∀𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
32exbidv 1850 . . . . 5 (𝑎 = 𝑥 → (∃𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑)))
43cbvalv 2273 . . . 4 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑))
5 neeq1 2856 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑑 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 fveq2 6191 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑐𝑑) = (𝑐𝑧))
7 id 22 . . . . . . . . . . 11 (𝑑 = 𝑧𝑑 = 𝑧)
86, 7eleq12d 2695 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑐𝑑) ∈ 𝑑 ↔ (𝑐𝑧) ∈ 𝑧))
95, 8imbi12d 334 . . . . . . . . 9 (𝑑 = 𝑧 → ((𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧)))
109cbvralv 3171 . . . . . . . 8 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧))
11 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → (𝑐𝑏) = (𝑐𝑧))
1211sneqd 4189 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 → {(𝑐𝑏)} = {(𝑐𝑧)})
13 eqid 2622 . . . . . . . . . . . . . 14 (𝑏𝑥 ↦ {(𝑐𝑏)}) = (𝑏𝑥 ↦ {(𝑐𝑏)})
14 snex 4908 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ∈ V
1512, 13, 14fvmpt 6282 . . . . . . . . . . . . 13 (𝑧𝑥 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
16153ad2ant1 1082 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) = {(𝑐𝑧)})
17 simp3 1063 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → (𝑐𝑧) ∈ 𝑧)
1817snssd 4340 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ⊆ 𝑧)
1914elpw 4164 . . . . . . . . . . . . . . 15 ({(𝑐𝑧)} ∈ 𝒫 𝑧 ↔ {(𝑐𝑧)} ⊆ 𝑧)
2018, 19sylibr 224 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ 𝒫 𝑧)
21 snfi 8038 . . . . . . . . . . . . . . 15 {(𝑐𝑧)} ∈ Fin
2221a1i 11 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ Fin)
2320, 22elind 3798 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin))
24 fvex 6201 . . . . . . . . . . . . . . 15 (𝑐𝑧) ∈ V
2524snnz 4309 . . . . . . . . . . . . . 14 {(𝑐𝑧)} ≠ ∅
2625a1i 11 . . . . . . . . . . . . 13 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ≠ ∅)
27 eldifsn 4317 . . . . . . . . . . . . 13 ({(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ({(𝑐𝑧)} ∈ (𝒫 𝑧 ∩ Fin) ∧ {(𝑐𝑧)} ≠ ∅))
2823, 26, 27sylanbrc 698 . . . . . . . . . . . 12 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → {(𝑐𝑧)} ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
2916, 28eqeltrd 2701 . . . . . . . . . . 11 ((𝑧𝑥𝑧 ≠ ∅ ∧ (𝑐𝑧) ∈ 𝑧) → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))
30293exp 1264 . . . . . . . . . 10 (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑐𝑧) ∈ 𝑧 → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3130a2d 29 . . . . . . . . 9 (𝑧𝑥 → ((𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3231ralimia 2950 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑐𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3310, 32sylbi 207 . . . . . . 7 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
34 vex 3203 . . . . . . . . 9 𝑥 ∈ V
3534mptex 6486 . . . . . . . 8 (𝑏𝑥 ↦ {(𝑐𝑏)}) ∈ V
36 fveq1 6190 . . . . . . . . . . 11 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (𝑓𝑧) = ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧))
3736eleq1d 2686 . . . . . . . . . 10 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}) ↔ ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
3837imbi2d 330 . . . . . . . . 9 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
3938ralbidv 2986 . . . . . . . 8 (𝑓 = (𝑏𝑥 ↦ {(𝑐𝑏)}) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4035, 39spcev 3300 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑏𝑥 ↦ {(𝑐𝑏)})‘𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4133, 40syl 17 . . . . . 6 (∀𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4241exlimiv 1858 . . . . 5 (∃𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
4342alimi 1739 . . . 4 (∀𝑥𝑐𝑑𝑥 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
444, 43sylbi 207 . . 3 (∀𝑎𝑐𝑑𝑎 (𝑑 ≠ ∅ → (𝑐𝑑) ∈ 𝑑) → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
451, 44sylbi 207 . 2 (CHOICE → ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
46 fvex 6201 . . . . . . 7 (𝑅1‘(rank‘𝑎)) ∈ V
4746pwex 4848 . . . . . 6 𝒫 (𝑅1‘(rank‘𝑎)) ∈ V
48 raleq 3138 . . . . . . 7 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
4948exbidv 1850 . . . . . 6 (𝑥 = 𝒫 (𝑅1‘(rank‘𝑎)) → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) ↔ ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅}))))
5047, 49spcv 3299 . . . . 5 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
51 rankon 8658 . . . . . . . 8 (rank‘𝑎) ∈ On
5251a1i 11 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → (rank‘𝑎) ∈ On)
53 id 22 . . . . . . 7 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
5452, 53aomclem8 37631 . . . . . 6 (∀𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
5554exlimiv 1858 . . . . 5 (∃𝑓𝑧 ∈ 𝒫 (𝑅1‘(rank‘𝑎))(𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)))
56 vex 3203 . . . . . 6 𝑎 ∈ V
57 r1rankid 8722 . . . . . 6 (𝑎 ∈ V → 𝑎 ⊆ (𝑅1‘(rank‘𝑎)))
58 wess 5101 . . . . . . 7 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (𝑏 We (𝑅1‘(rank‘𝑎)) → 𝑏 We 𝑎))
5958eximdv 1846 . . . . . 6 (𝑎 ⊆ (𝑅1‘(rank‘𝑎)) → (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎))
6056, 57, 59mp2b 10 . . . . 5 (∃𝑏 𝑏 We (𝑅1‘(rank‘𝑎)) → ∃𝑏 𝑏 We 𝑎)
6150, 55, 603syl 18 . . . 4 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∃𝑏 𝑏 We 𝑎)
6261alrimiv 1855 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → ∀𝑎𝑏 𝑏 We 𝑎)
63 dfac8 8957 . . 3 (CHOICE ↔ ∀𝑎𝑏 𝑏 We 𝑎)
6462, 63sylibr 224 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})) → CHOICE)
6545, 64impbii 199 1 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ ((𝒫 𝑧 ∩ Fin) ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cmpt 4729   We wwe 5072  Oncon0 5723  cfv 5888  Fincfn 7955  𝑅1cr1 8625  rankcrnk 8626  CHOICEwac 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-sup 8348  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator