![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > brafnmul | Structured version Visualization version GIF version |
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brafnmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 27870 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
2 | brafval 28802 | . . 3 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → (bra‘(𝐴 ·ℎ 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) |
4 | cjcl 13845 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
5 | brafn 28806 | . . . 4 ⊢ (𝐵 ∈ ℋ → (bra‘𝐵): ℋ⟶ℂ) | |
6 | hfmmval 28598 | . . . 4 ⊢ (((∗‘𝐴) ∈ ℂ ∧ (bra‘𝐵): ℋ⟶ℂ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) | |
7 | 4, 5, 6 | syl2an 494 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) |
8 | his5 27943 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) | |
9 | 8 | 3expa 1265 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
10 | 9 | an32s 846 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
11 | braval 28803 | . . . . . . 7 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵)) | |
12 | 11 | adantll 750 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵)) |
13 | 12 | oveq2d 6666 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
14 | 10, 13 | eqtr4d 2659 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))) |
15 | 14 | mpteq2dva 4744 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵))) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) |
16 | 7, 15 | eqtr4d 2659 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) |
17 | 3, 16 | eqtr4d 2659 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 · cmul 9941 ∗ccj 13836 ℋchil 27776 ·ℎ csm 27778 ·ih csp 27779 ·fn chft 27799 bracbr 27813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-hilex 27856 ax-hfvmul 27862 ax-hfi 27936 ax-his1 27939 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 df-hfmul 28593 df-bra 28709 |
This theorem is referenced by: cnvbramul 28974 |
Copyright terms: Public domain | W3C validator |