MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfres Structured version   Visualization version   GIF version

Theorem cantnfres 8574
Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
cantnfres.m (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
Assertion
Ref Expression
cantnfres (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfres
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfrescl.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ On)
2 cantnfrescl.b . . . . . . . . . . . . 13 (𝜑𝐵𝐷)
3 cantnfrescl.x . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
41, 2, 3extmptsuppeq 7319 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
5 oieq2 8418 . . . . . . . . . . . 12 (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
76fveq1d 6193 . . . . . . . . . 10 (𝜑 → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
873ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
98oveq2d 6666 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = (𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
10 suppssdm 7308 . . . . . . . . . . . . 13 ((𝑛𝐵𝑋) supp ∅) ⊆ dom (𝑛𝐵𝑋)
11 eqid 2622 . . . . . . . . . . . . . . 15 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
1211dmmptss 5631 . . . . . . . . . . . . . 14 dom (𝑛𝐵𝑋) ⊆ 𝐵
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝑛𝐵𝑋) ⊆ 𝐵)
1410, 13syl5ss 3614 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
15143ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
16 eqid 2622 . . . . . . . . . . . . . 14 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐵𝑋) supp ∅))
1716oif 8435 . . . . . . . . . . . . 13 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)):dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))⟶((𝑛𝐵𝑋) supp ∅)
1817ffvelrni 6358 . . . . . . . . . . . 12 (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
19183ad2ant2 1083 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
2015, 19sseldd 3604 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ 𝐵)
21 fvres 6207 . . . . . . . . . 10 ((OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ 𝐵 → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
2323ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → 𝐵𝐷)
2423resmptd 5452 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋) ↾ 𝐵) = (𝑛𝐵𝑋))
2524fveq1d 6193 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
268fveq2d 6195 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
2722, 25, 263eqtr3d 2664 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
289, 27oveq12d 6668 . . . . . . 7 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) = ((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))))
2928oveq1d 6665 . . . . . 6 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧) = (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧))
3029mpt2eq3dva 6719 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)))
316dmeqd 5326 . . . . . 6 (𝜑 → dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
32 eqid 2622 . . . . . 6 On = On
33 mpt2eq12 6715 . . . . . 6 ((dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) ∧ On = On) → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)))
3431, 32, 33sylancl 694 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)))
3530, 34eqtrd 2656 . . . 4 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)))
36 eqid 2622 . . . 4 ∅ = ∅
37 seqomeq12 7549 . . . 4 (((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅))
3835, 36, 37sylancl 694 . . 3 (𝜑 → seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅))
3938, 31fveq12d 6197 . 2 (𝜑 → (seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))) = (seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
40 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
41 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
42 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
43 cantnfres.m . . 3 (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
44 eqid 2622 . . 3 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
4540, 41, 42, 16, 43, 44cantnfval2 8566 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = (seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))))
46 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
47 eqid 2622 . . 3 OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅))
48 cantnfrescl.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
4940, 41, 42, 1, 2, 3, 48, 46cantnfrescl 8573 . . . 4 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
5043, 49mpbid 222 . . 3 (𝜑 → (𝑛𝐷𝑋) ∈ 𝑇)
51 eqid 2622 . . 3 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
5246, 41, 1, 47, 50, 51cantnfval2 8566 . 2 (𝜑 → ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)) = (seq𝜔((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴𝑜 (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·𝑜 ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
5339, 45, 523eqtr4d 2666 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  c0 3915  cmpt 4729   E cep 5028  dom cdm 5114  cres 5116  Oncon0 5723  cfv 5888  (class class class)co 6650  cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator