MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   GIF version

Theorem cantnfp1lem1 8575
Description: Lemma for cantnfp1 8578. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1lem1 (𝜑𝐹𝑆)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
21adantr 481 . . . 4 ((𝜑𝑡𝐵) → 𝑌𝐴)
3 cantnfp1.g . . . . . . 7 (𝜑𝐺𝑆)
4 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
74, 5, 6cantnfs 8563 . . . . . . 7 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
83, 7mpbid 222 . . . . . 6 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 475 . . . . 5 (𝜑𝐺:𝐵𝐴)
109ffvelrnda 6359 . . . 4 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
112, 10ifcld 4131 . . 3 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
12 cantnfp1.f . . 3 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1311, 12fmptd 6385 . 2 (𝜑𝐹:𝐵𝐴)
148simprd 479 . . . . . 6 (𝜑𝐺 finSupp ∅)
1514fsuppimpd 8282 . . . . 5 (𝜑 → (𝐺 supp ∅) ∈ Fin)
16 snfi 8038 . . . . 5 {𝑋} ∈ Fin
17 unfi 8227 . . . . 5 (((𝐺 supp ∅) ∈ Fin ∧ {𝑋} ∈ Fin) → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
1815, 16, 17sylancl 694 . . . 4 (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
19 eldifi 3732 . . . . . . . 8 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
2019adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
211adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
22 fvex 6201 . . . . . . . 8 (𝐺𝑘) ∈ V
23 ifexg 4157 . . . . . . . 8 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2421, 22, 23sylancl 694 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
25 eqeq1 2626 . . . . . . . . 9 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
26 fveq2 6191 . . . . . . . . 9 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
2725, 26ifbieq2d 4111 . . . . . . . 8 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
2827, 12fvmptg 6280 . . . . . . 7 ((𝑘𝐵 ∧ if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
2920, 24, 28syl2anc 693 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
30 eldifn 3733 . . . . . . . . 9 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3130adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
32 velsn 4193 . . . . . . . . 9 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
33 elun2 3781 . . . . . . . . 9 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3432, 33sylbir 225 . . . . . . . 8 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3531, 34nsyl 135 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
3635iffalsed 4097 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
37 ssun1 3776 . . . . . . . . 9 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
38 sscon 3744 . . . . . . . . 9 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
3937, 38ax-mp 5 . . . . . . . 8 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
4039sseli 3599 . . . . . . 7 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
41 eqid 2622 . . . . . . . . 9 (𝐺 supp ∅) = (𝐺 supp ∅)
42 eqimss2 3658 . . . . . . . . 9 ((𝐺 supp ∅) = (𝐺 supp ∅) → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
4341, 42mp1i 13 . . . . . . . 8 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
44 0ex 4790 . . . . . . . . 9 ∅ ∈ V
4544a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
469, 43, 6, 45suppssr 7326 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
4740, 46sylan2 491 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
4829, 36, 473eqtrd 2660 . . . . 5 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
4913, 48suppss 7325 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
50 ssfi 8180 . . . 4 ((((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin ∧ (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})) → (𝐹 supp ∅) ∈ Fin)
5118, 49, 50syl2anc 693 . . 3 (𝜑 → (𝐹 supp ∅) ∈ Fin)
5212funmpt2 5927 . . . . 5 Fun 𝐹
5352a1i 11 . . . 4 (𝜑 → Fun 𝐹)
54 mptexg 6484 . . . . . 6 (𝐵 ∈ On → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) ∈ V)
5512, 54syl5eqel 2705 . . . . 5 (𝐵 ∈ On → 𝐹 ∈ V)
566, 55syl 17 . . . 4 (𝜑𝐹 ∈ V)
57 funisfsupp 8280 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5853, 56, 45, 57syl3anc 1326 . . 3 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5951, 58mpbird 247 . 2 (𝜑𝐹 finSupp ∅)
604, 5, 6cantnfs 8563 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
6113, 59, 60mpbir2and 957 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  dom cdm 5114  Oncon0 5723  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-cnf 8559
This theorem is referenced by:  cantnfp1lem2  8576  cantnfp1lem3  8577  cantnfp1  8578
  Copyright terms: Public domain W3C validator