| Step | Hyp | Ref
| Expression |
| 1 | | reldom 7961 |
. . . . 5
⊢ Rel
≼ |
| 2 | 1 | brrelex2i 5159 |
. . . 4
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
| 3 | | cdadom3 9010 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴 +𝑐 𝐴)) |
| 4 | 2, 2, 3 | syl2anc 693 |
. . 3
⊢ (ω
≼ 𝐴 → 𝐴 ≼ (𝐴 +𝑐 𝐴)) |
| 5 | | domtr 8009 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ≼ (𝐴 +𝑐 𝐴)) → ω ≼ (𝐴 +𝑐 𝐴)) |
| 6 | 4, 5 | mpdan 702 |
. 2
⊢ (ω
≼ 𝐴 → ω
≼ (𝐴
+𝑐 𝐴)) |
| 7 | | infn0 8222 |
. . . 4
⊢ (ω
≼ (𝐴
+𝑐 𝐴)
→ (𝐴
+𝑐 𝐴)
≠ ∅) |
| 8 | | cdafn 8991 |
. . . . . . . 8
⊢
+𝑐 Fn (V × V) |
| 9 | | fndm 5990 |
. . . . . . . 8
⊢ (
+𝑐 Fn (V × V) → dom +𝑐 = (V
× V)) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢ dom
+𝑐 = (V × V) |
| 11 | 10 | ndmov 6818 |
. . . . . 6
⊢ (¬
(𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 +𝑐 𝐴) = ∅) |
| 12 | 11 | necon1ai 2821 |
. . . . 5
⊢ ((𝐴 +𝑐 𝐴) ≠ ∅ → (𝐴 ∈ V ∧ 𝐴 ∈ V)) |
| 13 | 12 | simpld 475 |
. . . 4
⊢ ((𝐴 +𝑐 𝐴) ≠ ∅ → 𝐴 ∈ V) |
| 14 | 7, 13 | syl 17 |
. . 3
⊢ (ω
≼ (𝐴
+𝑐 𝐴)
→ 𝐴 ∈
V) |
| 15 | | ovex 6678 |
. . . . 5
⊢ (𝐴 +𝑐 𝐴) ∈ V |
| 16 | 15 | domen 7968 |
. . . 4
⊢ (ω
≼ (𝐴
+𝑐 𝐴)
↔ ∃𝑥(ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) |
| 17 | | indi 3873 |
. . . . . . . . 9
⊢ (𝑥 ∩ ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜}))) =
((𝑥 ∩ (𝐴 × {∅})) ∪
(𝑥 ∩ (𝐴 ×
{1𝑜}))) |
| 18 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → 𝑥 ⊆ (𝐴 +𝑐 𝐴)) |
| 19 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → 𝐴 ∈ V) |
| 20 | | cdaval 8992 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 +𝑐 𝐴) = ((𝐴 × {∅}) ∪ (𝐴 ×
{1𝑜}))) |
| 21 | 19, 19, 20 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → (𝐴 +𝑐 𝐴) = ((𝐴 × {∅}) ∪ (𝐴 ×
{1𝑜}))) |
| 22 | 18, 21 | sseqtrd 3641 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → 𝑥 ⊆ ((𝐴 × {∅}) ∪ (𝐴 ×
{1𝑜}))) |
| 23 | | df-ss 3588 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜})) ↔
(𝑥 ∩ ((𝐴 × {∅}) ∪ (𝐴 ×
{1𝑜}))) = 𝑥) |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → (𝑥 ∩ ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜}))) = 𝑥) |
| 25 | 17, 24 | syl5eqr 2670 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → ((𝑥 ∩ (𝐴 × {∅})) ∪ (𝑥 ∩ (𝐴 × {1𝑜}))) = 𝑥) |
| 26 | | ensym 8005 |
. . . . . . . . 9
⊢ (ω
≈ 𝑥 → 𝑥 ≈
ω) |
| 27 | 26 | ad2antrl 764 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → 𝑥 ≈ ω) |
| 28 | 25, 27 | eqbrtrd 4675 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ (ω ≈
𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴))) → ((𝑥 ∩ (𝐴 × {∅})) ∪ (𝑥 ∩ (𝐴 × {1𝑜}))) ≈
ω) |
| 29 | 28 | ex 450 |
. . . . . 6
⊢ (𝐴 ∈ V → ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴)) → ((𝑥 ∩ (𝐴 × {∅})) ∪ (𝑥 ∩ (𝐴 × {1𝑜}))) ≈
ω)) |
| 30 | | cdainflem 9013 |
. . . . . . 7
⊢ (((𝑥 ∩ (𝐴 × {∅})) ∪ (𝑥 ∩ (𝐴 × {1𝑜}))) ≈
ω → ((𝑥 ∩
(𝐴 × {∅}))
≈ ω ∨ (𝑥
∩ (𝐴 ×
{1𝑜})) ≈ ω)) |
| 31 | | snex 4908 |
. . . . . . . . . . . 12
⊢ {∅}
∈ V |
| 32 | | xpexg 6960 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ V ∧ {∅} ∈
V) → (𝐴 ×
{∅}) ∈ V) |
| 33 | 31, 32 | mpan2 707 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 × {∅}) ∈
V) |
| 34 | | inss2 3834 |
. . . . . . . . . . 11
⊢ (𝑥 ∩ (𝐴 × {∅})) ⊆ (𝐴 ×
{∅}) |
| 35 | | ssdomg 8001 |
. . . . . . . . . . 11
⊢ ((𝐴 × {∅}) ∈ V
→ ((𝑥 ∩ (𝐴 × {∅})) ⊆
(𝐴 × {∅})
→ (𝑥 ∩ (𝐴 × {∅})) ≼
(𝐴 ×
{∅}))) |
| 36 | 33, 34, 35 | mpisyl 21 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝑥 ∩ (𝐴 × {∅})) ≼ (𝐴 ×
{∅})) |
| 37 | | 0ex 4790 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 38 | | xpsneng 8045 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ ∅ ∈
V) → (𝐴 ×
{∅}) ≈ 𝐴) |
| 39 | 37, 38 | mpan2 707 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝐴 × {∅}) ≈
𝐴) |
| 40 | | domentr 8015 |
. . . . . . . . . 10
⊢ (((𝑥 ∩ (𝐴 × {∅})) ≼ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≈
𝐴) → (𝑥 ∩ (𝐴 × {∅})) ≼ 𝐴) |
| 41 | 36, 39, 40 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑥 ∩ (𝐴 × {∅})) ≼ 𝐴) |
| 42 | | domen1 8102 |
. . . . . . . . 9
⊢ ((𝑥 ∩ (𝐴 × {∅})) ≈ ω →
((𝑥 ∩ (𝐴 × {∅})) ≼
𝐴 ↔ ω ≼
𝐴)) |
| 43 | 41, 42 | syl5ibcom 235 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((𝑥 ∩ (𝐴 × {∅})) ≈ ω →
ω ≼ 𝐴)) |
| 44 | | snex 4908 |
. . . . . . . . . . . 12
⊢
{1𝑜} ∈ V |
| 45 | | xpexg 6960 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ V ∧
{1𝑜} ∈ V) → (𝐴 × {1𝑜}) ∈
V) |
| 46 | 44, 45 | mpan2 707 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (𝐴 ×
{1𝑜}) ∈ V) |
| 47 | | inss2 3834 |
. . . . . . . . . . 11
⊢ (𝑥 ∩ (𝐴 × {1𝑜})) ⊆
(𝐴 ×
{1𝑜}) |
| 48 | | ssdomg 8001 |
. . . . . . . . . . 11
⊢ ((𝐴 ×
{1𝑜}) ∈ V → ((𝑥 ∩ (𝐴 × {1𝑜})) ⊆
(𝐴 ×
{1𝑜}) → (𝑥 ∩ (𝐴 × {1𝑜})) ≼
(𝐴 ×
{1𝑜}))) |
| 49 | 46, 47, 48 | mpisyl 21 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝑥 ∩ (𝐴 × {1𝑜})) ≼
(𝐴 ×
{1𝑜})) |
| 50 | | 1on 7567 |
. . . . . . . . . . 11
⊢
1𝑜 ∈ On |
| 51 | | xpsneng 8045 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧
1𝑜 ∈ On) → (𝐴 × {1𝑜}) ≈
𝐴) |
| 52 | 50, 51 | mpan2 707 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝐴 ×
{1𝑜}) ≈ 𝐴) |
| 53 | | domentr 8015 |
. . . . . . . . . 10
⊢ (((𝑥 ∩ (𝐴 × {1𝑜})) ≼
(𝐴 ×
{1𝑜}) ∧ (𝐴 × {1𝑜}) ≈
𝐴) → (𝑥 ∩ (𝐴 × {1𝑜})) ≼
𝐴) |
| 54 | 49, 52, 53 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑥 ∩ (𝐴 × {1𝑜})) ≼
𝐴) |
| 55 | | domen1 8102 |
. . . . . . . . 9
⊢ ((𝑥 ∩ (𝐴 × {1𝑜})) ≈
ω → ((𝑥 ∩
(𝐴 ×
{1𝑜})) ≼ 𝐴 ↔ ω ≼ 𝐴)) |
| 56 | 54, 55 | syl5ibcom 235 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((𝑥 ∩ (𝐴 × {1𝑜})) ≈
ω → ω ≼ 𝐴)) |
| 57 | 43, 56 | jaod 395 |
. . . . . . 7
⊢ (𝐴 ∈ V → (((𝑥 ∩ (𝐴 × {∅})) ≈ ω ∨
(𝑥 ∩ (𝐴 × {1𝑜})) ≈
ω) → ω ≼ 𝐴)) |
| 58 | 30, 57 | syl5 34 |
. . . . . 6
⊢ (𝐴 ∈ V → (((𝑥 ∩ (𝐴 × {∅})) ∪ (𝑥 ∩ (𝐴 × {1𝑜}))) ≈
ω → ω ≼ 𝐴)) |
| 59 | 29, 58 | syld 47 |
. . . . 5
⊢ (𝐴 ∈ V → ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴)) → ω ≼ 𝐴)) |
| 60 | 59 | exlimdv 1861 |
. . . 4
⊢ (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 +𝑐 𝐴)) → ω ≼ 𝐴)) |
| 61 | 16, 60 | syl5bi 232 |
. . 3
⊢ (𝐴 ∈ V → (ω
≼ (𝐴
+𝑐 𝐴)
→ ω ≼ 𝐴)) |
| 62 | 14, 61 | mpcom 38 |
. 2
⊢ (ω
≼ (𝐴
+𝑐 𝐴)
→ ω ≼ 𝐴) |
| 63 | 6, 62 | impbii 199 |
1
⊢ (ω
≼ 𝐴 ↔ ω
≼ (𝐴
+𝑐 𝐴)) |