MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcda1 Structured version   Visualization version   GIF version

Theorem infcda1 9015
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
infcda1 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)

Proof of Theorem infcda1
StepHypRef Expression
1 reldom 7961 . . . . . . . 8 Rel ≼
21brrelex2i 5159 . . . . . . 7 (ω ≼ 𝐴𝐴 ∈ V)
3 1on 7567 . . . . . . 7 1𝑜 ∈ On
4 cdaval 8992 . . . . . . 7 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
52, 3, 4sylancl 694 . . . . . 6 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
6 df1o2 7572 . . . . . . . . 9 1𝑜 = {∅}
76xpeq1i 5135 . . . . . . . 8 (1𝑜 × {1𝑜}) = ({∅} × {1𝑜})
8 0ex 4790 . . . . . . . . 9 ∅ ∈ V
93elexi 3213 . . . . . . . . 9 1𝑜 ∈ V
108, 9xpsn 6407 . . . . . . . 8 ({∅} × {1𝑜}) = {⟨∅, 1𝑜⟩}
117, 10eqtr2i 2645 . . . . . . 7 {⟨∅, 1𝑜⟩} = (1𝑜 × {1𝑜})
1211a1i 11 . . . . . 6 (ω ≼ 𝐴 → {⟨∅, 1𝑜⟩} = (1𝑜 × {1𝑜}))
135, 12difeq12d 3729 . . . . 5 (ω ≼ 𝐴 → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) = (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ (1𝑜 × {1𝑜})))
14 difun2 4048 . . . . . 6 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ (1𝑜 × {1𝑜})) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜}))
15 xp01disj 7576 . . . . . . 7 ((𝐴 × {∅}) ∩ (1𝑜 × {1𝑜})) = ∅
16 disj3 4021 . . . . . . 7 (((𝐴 × {∅}) ∩ (1𝑜 × {1𝑜})) = ∅ ↔ (𝐴 × {∅}) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜})))
1715, 16mpbi 220 . . . . . 6 (𝐴 × {∅}) = ((𝐴 × {∅}) ∖ (1𝑜 × {1𝑜}))
1814, 17eqtr4i 2647 . . . . 5 (((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})) ∖ (1𝑜 × {1𝑜})) = (𝐴 × {∅})
1913, 18syl6eq 2672 . . . 4 (ω ≼ 𝐴 → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) = (𝐴 × {∅}))
20 cdadom3 9010 . . . . . . 7 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → 𝐴 ≼ (𝐴 +𝑐 1𝑜))
212, 3, 20sylancl 694 . . . . . 6 (ω ≼ 𝐴𝐴 ≼ (𝐴 +𝑐 1𝑜))
22 domtr 8009 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ (𝐴 +𝑐 1𝑜)) → ω ≼ (𝐴 +𝑐 1𝑜))
2321, 22mpdan 702 . . . . 5 (ω ≼ 𝐴 → ω ≼ (𝐴 +𝑐 1𝑜))
24 infdifsn 8554 . . . . 5 (ω ≼ (𝐴 +𝑐 1𝑜) → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) ≈ (𝐴 +𝑐 1𝑜))
2523, 24syl 17 . . . 4 (ω ≼ 𝐴 → ((𝐴 +𝑐 1𝑜) ∖ {⟨∅, 1𝑜⟩}) ≈ (𝐴 +𝑐 1𝑜))
2619, 25eqbrtrrd 4677 . . 3 (ω ≼ 𝐴 → (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜))
2726ensymd 8007 . 2 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ (𝐴 × {∅}))
28 xpsneng 8045 . . 3 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
292, 8, 28sylancl 694 . 2 (ω ≼ 𝐴 → (𝐴 × {∅}) ≈ 𝐴)
30 entr 8008 . 2 (((𝐴 +𝑐 1𝑜) ≈ (𝐴 × {∅}) ∧ (𝐴 × {∅}) ≈ 𝐴) → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
3127, 29, 30syl2anc 693 1 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  cen 7952  cdom 7953   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-cda 8990
This theorem is referenced by:  pwcdaidm  9017  isfin4-3  9137  canthp1lem2  9475
  Copyright terms: Public domain W3C validator