MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   GIF version

Theorem infdif 9031
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
2 difss 3737 . . 3 (𝐴𝐵) ⊆ 𝐴
3 ssdomg 8001 . . 3 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
41, 2, 3mpisyl 21 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
5 sdomdom 7983 . . . . . . . . 9 (𝐵𝐴𝐵𝐴)
653ad2ant3 1084 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
7 numdom 8861 . . . . . . . 8 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
81, 6, 7syl2anc 693 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
9 unnum 9022 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
101, 8, 9syl2anc 693 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
11 ssun1 3776 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
12 ssdomg 8001 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
1310, 11, 12mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
14 undif1 4043 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
15 ssnum 8862 . . . . . . . 8 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ dom card)
161, 2, 15sylancl 694 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
17 uncdadom 8993 . . . . . . 7 (((𝐴𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
1816, 8, 17syl2anc 693 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
1914, 18syl5eqbrr 4689 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵))
20 domtr 8009 . . . . 5 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ((𝐴𝐵) +𝑐 𝐵)) → 𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵))
2113, 19, 20syl2anc 693 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵))
22 simp3 1063 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
23 sdomdom 7983 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵 → (𝐴𝐵) ≼ 𝐵)
24 cdadom1 9008 . . . . . . . . 9 ((𝐴𝐵) ≼ 𝐵 → ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵))
2523, 24syl 17 . . . . . . . 8 ((𝐴𝐵) ≺ 𝐵 → ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵))
26 domtr 8009 . . . . . . . . . . 11 ((𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) ∧ ((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵)) → 𝐴 ≼ (𝐵 +𝑐 𝐵))
2726ex 450 . . . . . . . . . 10 (𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴 ≼ (𝐵 +𝑐 𝐵)))
2821, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴 ≼ (𝐵 +𝑐 𝐵)))
29 simp2 1062 . . . . . . . . . . . 12 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
30 domtr 8009 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ≼ (𝐵 +𝑐 𝐵)) → ω ≼ (𝐵 +𝑐 𝐵))
3130ex 450 . . . . . . . . . . . 12 (ω ≼ 𝐴 → (𝐴 ≼ (𝐵 +𝑐 𝐵) → ω ≼ (𝐵 +𝑐 𝐵)))
3229, 31syl 17 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → ω ≼ (𝐵 +𝑐 𝐵)))
33 cdainf 9014 . . . . . . . . . . . . 13 (ω ≼ 𝐵 ↔ ω ≼ (𝐵 +𝑐 𝐵))
3433biimpri 218 . . . . . . . . . . . 12 (ω ≼ (𝐵 +𝑐 𝐵) → ω ≼ 𝐵)
35 domrefg 7990 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → 𝐵𝐵)
36 infcdaabs 9028 . . . . . . . . . . . . . . 15 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
37363com23 1271 . . . . . . . . . . . . . 14 ((𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵)
38373expia 1267 . . . . . . . . . . . . 13 ((𝐵 ∈ dom card ∧ 𝐵𝐵) → (ω ≼ 𝐵 → (𝐵 +𝑐 𝐵) ≈ 𝐵))
3935, 38mpdan 702 . . . . . . . . . . . 12 (𝐵 ∈ dom card → (ω ≼ 𝐵 → (𝐵 +𝑐 𝐵) ≈ 𝐵))
408, 34, 39syl2im 40 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐵 +𝑐 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵))
4132, 40syld 47 . . . . . . . . . 10 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → (𝐵 +𝑐 𝐵) ≈ 𝐵))
42 domen2 8103 . . . . . . . . . . 11 ((𝐵 +𝑐 𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵 +𝑐 𝐵) ↔ 𝐴𝐵))
4342biimpcd 239 . . . . . . . . . 10 (𝐴 ≼ (𝐵 +𝑐 𝐵) → ((𝐵 +𝑐 𝐵) ≈ 𝐵𝐴𝐵))
4441, 43sylcom 30 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵 +𝑐 𝐵) → 𝐴𝐵))
4528, 44syld 47 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) +𝑐 𝐵) ≼ (𝐵 +𝑐 𝐵) → 𝐴𝐵))
46 domnsym 8086 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐵𝐴)
4725, 45, 46syl56 36 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ≺ 𝐵 → ¬ 𝐵𝐴))
4822, 47mt2d 131 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≺ 𝐵)
49 domtri2 8815 . . . . . . 7 ((𝐵 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
508, 16, 49syl2anc 693 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
5148, 50mpbird 247 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≼ (𝐴𝐵))
52 cdadom2 9009 . . . . 5 (𝐵 ≼ (𝐴𝐵) → ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5351, 52syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
54 domtr 8009 . . . 4 ((𝐴 ≼ ((𝐴𝐵) +𝑐 𝐵) ∧ ((𝐴𝐵) +𝑐 𝐵) ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵))) → 𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5521, 53, 54syl2anc 693 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
56 domtr 8009 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵))) → ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5729, 55, 56syl2anc 693 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
58 cdainf 9014 . . . . 5 (ω ≼ (𝐴𝐵) ↔ ω ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)))
5957, 58sylibr 224 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴𝐵))
60 domrefg 7990 . . . . 5 ((𝐴𝐵) ∈ dom card → (𝐴𝐵) ≼ (𝐴𝐵))
6116, 60syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
62 infcdaabs 9028 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵))
6316, 59, 61, 62syl3anc 1326 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵))
64 domentr 8015 . . 3 ((𝐴 ≼ ((𝐴𝐵) +𝑐 (𝐴𝐵)) ∧ ((𝐴𝐵) +𝑐 (𝐴𝐵)) ≈ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
6555, 63, 64syl2anc 693 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
66 sbth 8080 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
674, 65, 66syl2anc 693 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1037  wcel 1990  cdif 3571  cun 3572  wss 3574   class class class wbr 4653  dom cdm 5114  (class class class)co 6650  ωcom 7065  cen 7952  cdom 7953  csdm 7954  cardccrd 8761   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  infdif2  9032  alephsuc3  9402  aleph1irr  14975
  Copyright terms: Public domain W3C validator