MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdainf Structured version   Visualization version   Unicode version

Theorem cdainf 9014
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdainf  |-  ( om  ~<_  A  <->  om  ~<_  ( A  +c  A ) )

Proof of Theorem cdainf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . . . 5  |-  Rel  ~<_
21brrelex2i 5159 . . . 4  |-  ( om  ~<_  A  ->  A  e.  _V )
3 cdadom3 9010 . . . 4  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  A  ~<_  ( A  +c  A ) )
42, 2, 3syl2anc 693 . . 3  |-  ( om  ~<_  A  ->  A  ~<_  ( A  +c  A ) )
5 domtr 8009 . . 3  |-  ( ( om  ~<_  A  /\  A  ~<_  ( A  +c  A
) )  ->  om  ~<_  ( A  +c  A ) )
64, 5mpdan 702 . 2  |-  ( om  ~<_  A  ->  om  ~<_  ( A  +c  A ) )
7 infn0 8222 . . . 4  |-  ( om  ~<_  ( A  +c  A
)  ->  ( A  +c  A )  =/=  (/) )
8 cdafn 8991 . . . . . . . 8  |-  +c  Fn  ( _V  X.  _V )
9 fndm 5990 . . . . . . . 8  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
108, 9ax-mp 5 . . . . . . 7  |-  dom  +c  =  ( _V  X.  _V )
1110ndmov 6818 . . . . . 6  |-  ( -.  ( A  e.  _V  /\  A  e.  _V )  ->  ( A  +c  A
)  =  (/) )
1211necon1ai 2821 . . . . 5  |-  ( ( A  +c  A )  =/=  (/)  ->  ( A  e.  _V  /\  A  e. 
_V ) )
1312simpld 475 . . . 4  |-  ( ( A  +c  A )  =/=  (/)  ->  A  e.  _V )
147, 13syl 17 . . 3  |-  ( om  ~<_  ( A  +c  A
)  ->  A  e.  _V )
15 ovex 6678 . . . . 5  |-  ( A  +c  A )  e. 
_V
1615domen 7968 . . . 4  |-  ( om  ~<_  ( A  +c  A
)  <->  E. x ( om 
~~  x  /\  x  C_  ( A  +c  A
) ) )
17 indi 3873 . . . . . . . . 9  |-  ( x  i^i  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) ) )  =  ( ( x  i^i  ( A  X.  { (/) } ) )  u.  ( x  i^i  ( A  X.  { 1o } ) ) )
18 simprr 796 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  x  C_  ( A  +c  A ) )
19 simpl 473 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  A  e.  _V )
20 cdaval 8992 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  +c  A
)  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
2119, 19, 20syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  ( A  +c  A )  =  ( ( A  X.  { (/)
} )  u.  ( A  X.  { 1o }
) ) )
2218, 21sseqtrd 3641 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  x  C_  (
( A  X.  { (/)
} )  u.  ( A  X.  { 1o }
) ) )
23 df-ss 3588 . . . . . . . . . 10  |-  ( x 
C_  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) )  <-> 
( x  i^i  (
( A  X.  { (/)
} )  u.  ( A  X.  { 1o }
) ) )  =  x )
2422, 23sylib 208 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  ( x  i^i  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) ) )  =  x )
2517, 24syl5eqr 2670 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  u.  ( x  i^i  ( A  X.  { 1o } ) ) )  =  x )
26 ensym 8005 . . . . . . . . 9  |-  ( om 
~~  x  ->  x  ~~  om )
2726ad2antrl 764 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  x  ~~  om )
2825, 27eqbrtrd 4675 . . . . . . 7  |-  ( ( A  e.  _V  /\  ( om  ~~  x  /\  x  C_  ( A  +c  A ) ) )  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  u.  ( x  i^i  ( A  X.  { 1o } ) ) ) 
~~  om )
2928ex 450 . . . . . 6  |-  ( A  e.  _V  ->  (
( om  ~~  x  /\  x  C_  ( A  +c  A ) )  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  u.  ( x  i^i  ( A  X.  { 1o } ) ) ) 
~~  om ) )
30 cdainflem 9013 . . . . . . 7  |-  ( ( ( x  i^i  ( A  X.  { (/) } ) )  u.  ( x  i^i  ( A  X.  { 1o } ) ) )  ~~  om  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  ~~  om  \/  ( x  i^i  ( A  X.  { 1o }
) )  ~~  om ) )
31 snex 4908 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
32 xpexg 6960 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
3331, 32mpan2 707 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  X.  { (/) } )  e.  _V )
34 inss2 3834 . . . . . . . . . . 11  |-  ( x  i^i  ( A  X.  { (/) } ) ) 
C_  ( A  X.  { (/) } )
35 ssdomg 8001 . . . . . . . . . . 11  |-  ( ( A  X.  { (/) } )  e.  _V  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  C_  ( A  X.  { (/) } )  -> 
( x  i^i  ( A  X.  { (/) } ) )  ~<_  ( A  X.  { (/) } ) ) )
3633, 34, 35mpisyl 21 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
x  i^i  ( A  X.  { (/) } ) )  ~<_  ( A  X.  { (/)
} ) )
37 0ex 4790 . . . . . . . . . . 11  |-  (/)  e.  _V
38 xpsneng 8045 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
3937, 38mpan2 707 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  X.  { (/) } ) 
~~  A )
40 domentr 8015 . . . . . . . . . 10  |-  ( ( ( x  i^i  ( A  X.  { (/) } ) )  ~<_  ( A  X.  { (/) } )  /\  ( A  X.  { (/) } )  ~~  A )  ->  ( x  i^i  ( A  X.  { (/)
} ) )  ~<_  A )
4136, 39, 40syl2anc 693 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
x  i^i  ( A  X.  { (/) } ) )  ~<_  A )
42 domen1 8102 . . . . . . . . 9  |-  ( ( x  i^i  ( A  X.  { (/) } ) )  ~~  om  ->  ( ( x  i^i  ( A  X.  { (/) } ) )  ~<_  A  <->  om  ~<_  A ) )
4341, 42syl5ibcom 235 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( x  i^i  ( A  X.  { (/) } ) )  ~~  om  ->  om  ~<_  A ) )
44 snex 4908 . . . . . . . . . . . 12  |-  { 1o }  e.  _V
45 xpexg 6960 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  { 1o }  e.  _V )  ->  ( A  X.  { 1o } )  e. 
_V )
4644, 45mpan2 707 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  X.  { 1o }
)  e.  _V )
47 inss2 3834 . . . . . . . . . . 11  |-  ( x  i^i  ( A  X.  { 1o } ) ) 
C_  ( A  X.  { 1o } )
48 ssdomg 8001 . . . . . . . . . . 11  |-  ( ( A  X.  { 1o } )  e.  _V  ->  ( ( x  i^i  ( A  X.  { 1o } ) )  C_  ( A  X.  { 1o } )  ->  (
x  i^i  ( A  X.  { 1o } ) )  ~<_  ( A  X.  { 1o } ) ) )
4946, 47, 48mpisyl 21 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
x  i^i  ( A  X.  { 1o } ) )  ~<_  ( A  X.  { 1o } ) )
50 1on 7567 . . . . . . . . . . 11  |-  1o  e.  On
51 xpsneng 8045 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  X.  { 1o } )  ~~  A
)
5250, 51mpan2 707 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  X.  { 1o }
)  ~~  A )
53 domentr 8015 . . . . . . . . . 10  |-  ( ( ( x  i^i  ( A  X.  { 1o }
) )  ~<_  ( A  X.  { 1o }
)  /\  ( A  X.  { 1o } ) 
~~  A )  -> 
( x  i^i  ( A  X.  { 1o }
) )  ~<_  A )
5449, 52, 53syl2anc 693 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
x  i^i  ( A  X.  { 1o } ) )  ~<_  A )
55 domen1 8102 . . . . . . . . 9  |-  ( ( x  i^i  ( A  X.  { 1o }
) )  ~~  om  ->  ( ( x  i^i  ( A  X.  { 1o } ) )  ~<_  A  <->  om 
~<_  A ) )
5654, 55syl5ibcom 235 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( x  i^i  ( A  X.  { 1o }
) )  ~~  om  ->  om  ~<_  A ) )
5743, 56jaod 395 . . . . . . 7  |-  ( A  e.  _V  ->  (
( ( x  i^i  ( A  X.  { (/)
} ) )  ~~  om  \/  ( x  i^i  ( A  X.  { 1o } ) )  ~~  om )  ->  om  ~<_  A ) )
5830, 57syl5 34 . . . . . 6  |-  ( A  e.  _V  ->  (
( ( x  i^i  ( A  X.  { (/)
} ) )  u.  ( x  i^i  ( A  X.  { 1o }
) ) )  ~~  om 
->  om  ~<_  A ) )
5929, 58syld 47 . . . . 5  |-  ( A  e.  _V  ->  (
( om  ~~  x  /\  x  C_  ( A  +c  A ) )  ->  om  ~<_  A )
)
6059exlimdv 1861 . . . 4  |-  ( A  e.  _V  ->  ( E. x ( om  ~~  x  /\  x  C_  ( A  +c  A ) )  ->  om  ~<_  A )
)
6116, 60syl5bi 232 . . 3  |-  ( A  e.  _V  ->  ( om 
~<_  ( A  +c  A
)  ->  om  ~<_  A ) )
6214, 61mpcom 38 . 2  |-  ( om  ~<_  ( A  +c  A
)  ->  om  ~<_  A )
636, 62impbii 199 1  |-  ( om  ~<_  A  <->  om  ~<_  ( A  +c  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Oncon0 5723    Fn wfn 5883  (class class class)co 6650   omcom 7065   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-cda 8990
This theorem is referenced by:  infdif  9031
  Copyright terms: Public domain W3C validator