| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdainf | Structured version Visualization version Unicode version | ||
| Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| cdainf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 7961 |
. . . . 5
| |
| 2 | 1 | brrelex2i 5159 |
. . . 4
|
| 3 | cdadom3 9010 |
. . . 4
| |
| 4 | 2, 2, 3 | syl2anc 693 |
. . 3
|
| 5 | domtr 8009 |
. . 3
| |
| 6 | 4, 5 | mpdan 702 |
. 2
|
| 7 | infn0 8222 |
. . . 4
| |
| 8 | cdafn 8991 |
. . . . . . . 8
| |
| 9 | fndm 5990 |
. . . . . . . 8
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
|
| 11 | 10 | ndmov 6818 |
. . . . . 6
|
| 12 | 11 | necon1ai 2821 |
. . . . 5
|
| 13 | 12 | simpld 475 |
. . . 4
|
| 14 | 7, 13 | syl 17 |
. . 3
|
| 15 | ovex 6678 |
. . . . 5
| |
| 16 | 15 | domen 7968 |
. . . 4
|
| 17 | indi 3873 |
. . . . . . . . 9
| |
| 18 | simprr 796 |
. . . . . . . . . . 11
| |
| 19 | simpl 473 |
. . . . . . . . . . . 12
| |
| 20 | cdaval 8992 |
. . . . . . . . . . . 12
| |
| 21 | 19, 19, 20 | syl2anc 693 |
. . . . . . . . . . 11
|
| 22 | 18, 21 | sseqtrd 3641 |
. . . . . . . . . 10
|
| 23 | df-ss 3588 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . 9
|
| 25 | 17, 24 | syl5eqr 2670 |
. . . . . . . 8
|
| 26 | ensym 8005 |
. . . . . . . . 9
| |
| 27 | 26 | ad2antrl 764 |
. . . . . . . 8
|
| 28 | 25, 27 | eqbrtrd 4675 |
. . . . . . 7
|
| 29 | 28 | ex 450 |
. . . . . 6
|
| 30 | cdainflem 9013 |
. . . . . . 7
| |
| 31 | snex 4908 |
. . . . . . . . . . . 12
| |
| 32 | xpexg 6960 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | mpan2 707 |
. . . . . . . . . . 11
|
| 34 | inss2 3834 |
. . . . . . . . . . 11
| |
| 35 | ssdomg 8001 |
. . . . . . . . . . 11
| |
| 36 | 33, 34, 35 | mpisyl 21 |
. . . . . . . . . 10
|
| 37 | 0ex 4790 |
. . . . . . . . . . 11
| |
| 38 | xpsneng 8045 |
. . . . . . . . . . 11
| |
| 39 | 37, 38 | mpan2 707 |
. . . . . . . . . 10
|
| 40 | domentr 8015 |
. . . . . . . . . 10
| |
| 41 | 36, 39, 40 | syl2anc 693 |
. . . . . . . . 9
|
| 42 | domen1 8102 |
. . . . . . . . 9
| |
| 43 | 41, 42 | syl5ibcom 235 |
. . . . . . . 8
|
| 44 | snex 4908 |
. . . . . . . . . . . 12
| |
| 45 | xpexg 6960 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | mpan2 707 |
. . . . . . . . . . 11
|
| 47 | inss2 3834 |
. . . . . . . . . . 11
| |
| 48 | ssdomg 8001 |
. . . . . . . . . . 11
| |
| 49 | 46, 47, 48 | mpisyl 21 |
. . . . . . . . . 10
|
| 50 | 1on 7567 |
. . . . . . . . . . 11
| |
| 51 | xpsneng 8045 |
. . . . . . . . . . 11
| |
| 52 | 50, 51 | mpan2 707 |
. . . . . . . . . 10
|
| 53 | domentr 8015 |
. . . . . . . . . 10
| |
| 54 | 49, 52, 53 | syl2anc 693 |
. . . . . . . . 9
|
| 55 | domen1 8102 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl5ibcom 235 |
. . . . . . . 8
|
| 57 | 43, 56 | jaod 395 |
. . . . . . 7
|
| 58 | 30, 57 | syl5 34 |
. . . . . 6
|
| 59 | 29, 58 | syld 47 |
. . . . 5
|
| 60 | 59 | exlimdv 1861 |
. . . 4
|
| 61 | 16, 60 | syl5bi 232 |
. . 3
|
| 62 | 14, 61 | mpcom 38 |
. 2
|
| 63 | 6, 62 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-cda 8990 |
| This theorem is referenced by: infdif 9031 |
| Copyright terms: Public domain | W3C validator |