Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Visualization version   GIF version

Theorem dvhopellsm 36406
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h 𝐻 = (LHyp‘𝐾)
dvhopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhopellsm.a + = (+g𝑈)
dvhopellsm.s 𝑆 = (LSubSp‘𝑈)
dvhopellsm.p = (LSSum‘𝑈)
Assertion
Ref Expression
dvhopellsm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧, +   𝑤,𝐹,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑊,𝑦   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤)   𝐾(𝑧,𝑤)   𝑊(𝑧,𝑤)

Proof of Theorem dvhopellsm
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dvhopellsm.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 36399 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LMod)
543ad2ant1 1082 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑈 ∈ LMod)
6 dvhopellsm.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
76lsssssubg 18958 . . . . 5 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
85, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (SubGrp‘𝑈))
9 simp2 1062 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
108, 9sseldd 3604 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (SubGrp‘𝑈))
11 simp3 1063 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
128, 11sseldd 3604 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (SubGrp‘𝑈))
13 dvhopellsm.a . . . 4 + = (+g𝑈)
14 dvhopellsm.p . . . 4 = (LSSum‘𝑈)
1513, 14lsmelval 18064 . . 3 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑌 ∈ (SubGrp‘𝑈)) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
1610, 12, 15syl2anc 693 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣)))
17 eqid 2622 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
1817, 6lssss 18937 . . . . . . 7 (𝑌𝑆𝑌 ⊆ (Base‘𝑈))
19183ad2ant3 1084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (Base‘𝑈))
20 eqid 2622 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
21 eqid 2622 . . . . . . . 8 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
221, 20, 21, 2, 17dvhvbase 36376 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
23223ad2ant1 1082 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 23sseqtrd 3641 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
25 relxp 5227 . . . . 5 Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))
26 relss 5206 . . . . 5 (𝑌 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑌))
2724, 25, 26mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑌)
28 oveq2 6658 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (𝑢 + 𝑣) = (𝑢 +𝑧, 𝑤⟩))
2928eqeq2d 2632 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)))
3029exopxfr2 5266 . . . 4 (Rel 𝑌 → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3127, 30syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3231rexbidv 3052 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑣𝑌𝐹, 𝑇⟩ = (𝑢 + 𝑣) ↔ ∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩))))
3317, 6lssss 18937 . . . . . . 7 (𝑋𝑆𝑋 ⊆ (Base‘𝑈))
34333ad2ant2 1083 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (Base‘𝑈))
3534, 23sseqtrd 3641 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
36 relss 5206 . . . . 5 (𝑋 ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → (Rel (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) → Rel 𝑋))
3735, 25, 36mpisyl 21 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → Rel 𝑋)
38 oveq1 6657 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑢 +𝑧, 𝑤⟩) = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))
3938eqeq2d 2632 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩) ↔ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4039anbi2d 740 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → ((⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
41402exbidv 1852 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4241exopxfr2 5266 . . . 4 (Rel 𝑋 → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
4337, 42syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))))
44 19.42vv 1920 . . . . 5 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
45 anass 681 . . . . . . . 8 (((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
46452exbii 1775 . . . . . . 7 (∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)) ↔ ∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4746bicomi 214 . . . . . 6 (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩)))
4847a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑧𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ (⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
4944, 48syl5bbr 274 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → ((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
50492exbidv 1852 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ∃𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5143, 50bitrd 268 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (∃𝑢𝑋𝑧𝑤(⟨𝑧, 𝑤⟩ ∈ 𝑌 ∧ ⟨𝐹, 𝑇⟩ = (𝑢 +𝑧, 𝑤⟩)) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
5216, 32, 513bitrd 294 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑆𝑌𝑆) → (⟨𝐹, 𝑇⟩ ∈ (𝑋 𝑌) ↔ ∃𝑥𝑦𝑧𝑤((⟨𝑥, 𝑦⟩ ∈ 𝑋 ∧ ⟨𝑧, 𝑤⟩ ∈ 𝑌) ∧ ⟨𝐹, 𝑇⟩ = (⟨𝑥, 𝑦+𝑧, 𝑤⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wrex 2913  wss 3574  cop 4183   × cxp 5112  Rel wrel 5119  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  SubGrpcsubg 17588  LSSumclsm 18049  LModclmod 18863  LSubSpclss 18932  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  TEndoctendo 36040  DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-lsm 18051  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  diblsmopel  36460  dihopelvalcpre  36537  xihopellsmN  36543  dihopellsm  36544
  Copyright terms: Public domain W3C validator