MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinufil Structured version   Visualization version   GIF version

Theorem cfinufil 21732
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil 21697 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinufil (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cfinufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4168 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2 ufilb 21710 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
32adantr 481 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
4 ufilfil 21708 . . . . . . . . . . . 12 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
54adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
6 filfinnfr 21681 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑋𝑥) ∈ 𝐹 ∧ (𝑋𝑥) ∈ Fin) → 𝐹 ≠ ∅)
763exp 1264 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐹 → ((𝑋𝑥) ∈ Fin → 𝐹 ≠ ∅)))
87com23 86 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
95, 8syl 17 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
109imp 445 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅))
113, 10sylbid 230 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 𝐹 ≠ ∅))
1211necon4bd 2814 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ( 𝐹 = ∅ → 𝑥𝐹))
1312ex 450 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ( 𝐹 = ∅ → 𝑥𝐹)))
1413com23 86 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
151, 14sylan2 491 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
1615ralrimdva 2969 . . 3 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ → ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
174adantr 481 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → 𝐹 ∈ (Fil‘𝑋))
18 uffixsn 21729 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ∈ 𝐹)
19 filelss 21656 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑦} ∈ 𝐹) → {𝑦} ⊆ 𝑋)
2017, 18, 19syl2anc 693 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ⊆ 𝑋)
21 dfss4 3858 . . . . . . . . . . 11 ({𝑦} ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
2220, 21sylib 208 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
23 snfi 8038 . . . . . . . . . 10 {𝑦} ∈ Fin
2422, 23syl6eqel 2709 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin)
25 difss 3737 . . . . . . . . . . 11 (𝑋 ∖ {𝑦}) ⊆ 𝑋
26 filtop 21659 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
27 elpw2g 4827 . . . . . . . . . . . 12 (𝑋𝐹 → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2817, 26, 273syl 18 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2925, 28mpbiri 248 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋)
30 difeq2 3722 . . . . . . . . . . . . 13 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑋𝑥) = (𝑋 ∖ (𝑋 ∖ {𝑦})))
3130eleq1d 2686 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → ((𝑋𝑥) ∈ Fin ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin))
32 eleq1 2689 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑥𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3331, 32imbi12d 334 . . . . . . . . . . 11 (𝑥 = (𝑋 ∖ {𝑦}) → (((𝑋𝑥) ∈ Fin → 𝑥𝐹) ↔ ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3433rspcv 3305 . . . . . . . . . 10 ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3529, 34syl 17 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3624, 35mpid 44 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝐹))
37 ufilb 21710 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑦} ⊆ 𝑋) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3820, 37syldan 487 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3918pm2.24d 147 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 → ¬ 𝑦 𝐹))
4038, 39sylbird 250 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝐹 → ¬ 𝑦 𝐹))
4136, 40syld 47 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ¬ 𝑦 𝐹))
4241impancom 456 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → (𝑦 𝐹 → ¬ 𝑦 𝐹))
4342pm2.01d 181 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → ¬ 𝑦 𝐹)
4443eq0rdv 3979 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → 𝐹 = ∅)
4544ex 450 . . 3 (𝐹 ∈ (UFil‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → 𝐹 = ∅))
4616, 45impbid 202 . 2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
47 rabss 3679 . 2 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹))
4846, 47syl6bbr 278 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cint 4475  cfv 5888  Fincfn 7955  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator