MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Structured version   Visualization version   GIF version

Theorem cnpart 13980
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 2898 . . . . . 6 (-(i · 𝐴) ∉ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+)
2 simpr 477 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) = 0)
3 0le0 11110 . . . . . . . 8 0 ≤ 0
42, 3syl6eqbr 4692 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) ≤ 0)
54biantrurd 529 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∉ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
61, 5syl5bbr 274 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ -(i · 𝐴) ∈ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
76con1bid 345 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+) ↔ -(i · 𝐴) ∈ ℝ+))
8 ax-icn 9995 . . . . . . . . . . . 12 i ∈ ℂ
9 mulcl 10020 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
108, 9mpan 706 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
11 reim0b 13859 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
1210, 11syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
13 imre 13848 . . . . . . . . . . . . 13 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1410, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
15 ine0 10465 . . . . . . . . . . . . . . . . 17 i ≠ 0
16 divrec2 10702 . . . . . . . . . . . . . . . . 17 (((i · 𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
178, 15, 16mp3an23 1416 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
1810, 17syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
19 irec 12964 . . . . . . . . . . . . . . . 16 (1 / i) = -i
2019oveq1i 6660 . . . . . . . . . . . . . . 15 ((1 / i) · (i · 𝐴)) = (-i · (i · 𝐴))
2118, 20syl6eq 2672 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = (-i · (i · 𝐴)))
22 divcan3 10711 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴)
238, 15, 22mp3an23 1416 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴)
2421, 23eqtr3d 2658 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2524fveq2d 6195 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
2614, 25eqtrd 2656 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
2726eqeq1d 2624 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘(i · 𝐴)) = 0 ↔ (ℜ‘𝐴) = 0))
2812, 27bitrd 268 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
2928biimpar 502 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
3029adantlr 751 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
31 mulne0 10669 . . . . . . . . 9 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (i · 𝐴) ≠ 0)
328, 15, 31mpanl12 718 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · 𝐴) ≠ 0)
3332adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ≠ 0)
34 rpneg 11863 . . . . . . 7 (((i · 𝐴) ∈ ℝ ∧ (i · 𝐴) ≠ 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3530, 33, 34syl2anc 693 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3635con2bid 344 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+))
37 df-nel 2898 . . . . 5 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
3836, 37syl6bbr 278 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
393, 2syl5breqr 4691 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → 0 ≤ (ℜ‘𝐴))
4039biantrurd 529 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∉ ℝ+ ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
417, 38, 403bitrrd 295 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
4228adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
4342necon3bbid 2831 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) ≠ 0))
4443biimpar 502 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ)
45 rpre 11839 . . . . . . . 8 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
4644, 45nsyl 135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ+)
4746, 37sylibr 224 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∉ ℝ+)
4847biantrud 528 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
49 simpr 477 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
5049biantrud 528 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
51 0re 10040 . . . . . . . 8 0 ∈ ℝ
52 recl 13850 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
53 ltlen 10138 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
54 ltnle 10117 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5553, 54bitr3d 270 . . . . . . . 8 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5651, 52, 55sylancr 695 . . . . . . 7 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5756ad2antrr 762 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5850, 57bitrd 268 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5948, 58bitr3d 270 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (ℜ‘𝐴) ≤ 0))
60 renegcl 10344 . . . . . . . . . 10 (-(i · 𝐴) ∈ ℝ → --(i · 𝐴) ∈ ℝ)
6110negnegd 10383 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → --(i · 𝐴) = (i · 𝐴))
6261eleq1d 2686 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6362ad2antrr 762 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6460, 63syl5ib 234 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (-(i · 𝐴) ∈ ℝ → (i · 𝐴) ∈ ℝ))
6544, 64mtod 189 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ)
66 rpre 11839 . . . . . . . 8 (-(i · 𝐴) ∈ ℝ+ → -(i · 𝐴) ∈ ℝ)
6765, 66nsyl 135 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ+)
6867, 1sylibr 224 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → -(i · 𝐴) ∉ ℝ+)
6968biantrud 528 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≤ 0 ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7069notbid 308 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (¬ (ℜ‘𝐴) ≤ 0 ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7159, 70bitrd 268 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7241, 71pm2.61dane 2881 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
73 reneg 13865 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7473breq2d 4665 . . . . . 6 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ 0 ≤ -(ℜ‘𝐴)))
7552le0neg1d 10599 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴)))
7674, 75bitr4d 271 . . . . 5 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ (ℜ‘𝐴) ≤ 0))
77 mulneg2 10467 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
788, 77mpan 706 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
79 neleq1 2902 . . . . . 6 ((i · -𝐴) = -(i · 𝐴) → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8078, 79syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8176, 80anbi12d 747 . . . 4 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8281notbid 308 . . 3 (𝐴 ∈ ℂ → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8382adantr 481 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8472, 83bitr4d 271 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wnel 2897   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   · cmul 9941   < clt 10074  cle 10075  -cneg 10267   / cdiv 10684  +crp 11832  cre 13837  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  sqrmo  13992
  Copyright terms: Public domain W3C validator