MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrest2r Structured version   Visualization version   GIF version

Theorem cnrest2r 21091
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
cnrest2r (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))

Proof of Theorem cnrest2r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)))
2 cntop2 21045 . . . . . . . 8 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → (𝐾t 𝐵) ∈ Top)
32adantl 482 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) ∈ Top)
4 restrcl 20961 . . . . . . 7 ((𝐾t 𝐵) ∈ Top → (𝐾 ∈ V ∧ 𝐵 ∈ V))
5 eqid 2622 . . . . . . . 8 𝐾 = 𝐾
65restin 20970 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
73, 4, 63syl 18 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t 𝐵) = (𝐾t (𝐵 𝐾)))
87oveq2d 6666 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐽 Cn (𝐾t 𝐵)) = (𝐽 Cn (𝐾t (𝐵 𝐾))))
91, 8eleqtrd 2703 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾))))
10 simpl 473 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ Top)
115toptopon 20722 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1210, 11sylib 208 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 cntop1 21044 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝐽 ∈ Top)
1413adantl 482 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ Top)
15 eqid 2622 . . . . . . . . 9 𝐽 = 𝐽
1615toptopon 20722 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1714, 16sylib 208 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 3834 . . . . . . . 8 (𝐵 𝐾) ⊆ 𝐾
19 resttopon 20965 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
2012, 18, 19sylancl 694 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)))
21 cnf2 21053 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐾t (𝐵 𝐾)) ∈ (TopOn‘(𝐵 𝐾)) ∧ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))) → 𝑓: 𝐽⟶(𝐵 𝐾))
2217, 20, 9, 21syl3anc 1326 . . . . . 6 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓: 𝐽⟶(𝐵 𝐾))
23 frn 6053 . . . . . 6 (𝑓: 𝐽⟶(𝐵 𝐾) → ran 𝑓 ⊆ (𝐵 𝐾))
2422, 23syl 17 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → ran 𝑓 ⊆ (𝐵 𝐾))
2518a1i 11 . . . . 5 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝐵 𝐾) ⊆ 𝐾)
26 cnrest2 21090 . . . . 5 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝑓 ⊆ (𝐵 𝐾) ∧ (𝐵 𝐾) ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
2712, 24, 25, 26syl3anc 1326 . . . 4 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ 𝑓 ∈ (𝐽 Cn (𝐾t (𝐵 𝐾)))))
289, 27mpbird 247 . . 3 ((𝐾 ∈ Top ∧ 𝑓 ∈ (𝐽 Cn (𝐾t 𝐵))) → 𝑓 ∈ (𝐽 Cn 𝐾))
2928ex 450 . 2 (𝐾 ∈ Top → (𝑓 ∈ (𝐽 Cn (𝐾t 𝐵)) → 𝑓 ∈ (𝐽 Cn 𝐾)))
3029ssrdv 3609 1 (𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574   cuni 4436  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  invrcn  21984  metdcn  22643  ngnmcncn  22648  metdscn2  22660  icchmeo  22740  cnrehmeo  22752  evth  22758  reparphti  22797  nmcnc  27551  connpconn  31217  cvxsconn  31225  cvmliftlem8  31274  cvmlift2lem9a  31285  cvmlift3lem6  31306  knoppcnlem10  32492  broucube  33443
  Copyright terms: Public domain W3C validator