Proof of Theorem cvmliftlem8
| Step | Hyp | Ref
| Expression |
| 1 | | elfznn 12370 |
. . 3
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ) |
| 2 | | cvmliftlem.1 |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 3 | | cvmliftlem.b |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
| 4 | | cvmliftlem.x |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
| 5 | | cvmliftlem.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 6 | | cvmliftlem.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 7 | | cvmliftlem.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 8 | | cvmliftlem.e |
. . . 4
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| 9 | | cvmliftlem.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 10 | | cvmliftlem.t |
. . . 4
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| 11 | | cvmliftlem.a |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| 12 | | cvmliftlem.l |
. . . 4
⊢ 𝐿 = (topGen‘ran
(,)) |
| 13 | | cvmliftlem.q |
. . . 4
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
| 14 | | cvmliftlem5.3 |
. . . 4
⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) |
| 15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem5 31271 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 16 | 1, 15 | sylan2 491 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) |
| 17 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 18 | | cvmtop1 31242 |
. . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
| 19 | | cnrest2r 21091 |
. . . 4
⊢ (𝐶 ∈ Top → ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
| 20 | 17, 18, 19 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) ⊆ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
| 21 | | retopon 22567 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 22 | 12, 21 | eqeltri 2697 |
. . . . 5
⊢ 𝐿 ∈
(TopOn‘ℝ) |
| 23 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁)) |
| 24 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14 | cvmliftlem2 31268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ (0[,]1)) |
| 25 | | unitssre 12319 |
. . . . . 6
⊢ (0[,]1)
⊆ ℝ |
| 26 | 24, 25 | syl6ss 3615 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑊 ⊆ ℝ) |
| 27 | | resttopon 20965 |
. . . . 5
⊢ ((𝐿 ∈ (TopOn‘ℝ)
∧ 𝑊 ⊆ ℝ)
→ (𝐿
↾t 𝑊)
∈ (TopOn‘𝑊)) |
| 28 | 22, 26, 27 | sylancr 695 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐿 ↾t 𝑊) ∈ (TopOn‘𝑊)) |
| 29 | | eqid 2622 |
. . . . . . 7
⊢ (II
↾t 𝑊) =
(II ↾t 𝑊) |
| 30 | | iitopon 22682 |
. . . . . . . 8
⊢ II ∈
(TopOn‘(0[,]1)) |
| 31 | 30 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → II ∈
(TopOn‘(0[,]1))) |
| 32 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺 ∈ (II Cn 𝐽)) |
| 33 | | iiuni 22684 |
. . . . . . . . . . 11
⊢ (0[,]1) =
∪ II |
| 34 | 33, 4 | cnf 21050 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋) |
| 35 | 32, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺:(0[,]1)⟶𝑋) |
| 36 | 35 | feqmptd 6249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐺 = (𝑧 ∈ (0[,]1) ↦ (𝐺‘𝑧))) |
| 37 | 36, 32 | eqeltrrd 2702 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ (0[,]1) ↦ (𝐺‘𝑧)) ∈ (II Cn 𝐽)) |
| 38 | 29, 31, 24, 37 | cnmpt1res 21479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((II ↾t 𝑊) Cn 𝐽)) |
| 39 | | dfii2 22685 |
. . . . . . . . . 10
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
| 40 | 12 | oveq1i 6660 |
. . . . . . . . . 10
⊢ (𝐿 ↾t (0[,]1)) =
((topGen‘ran (,)) ↾t (0[,]1)) |
| 41 | 39, 40 | eqtr4i 2647 |
. . . . . . . . 9
⊢ II =
(𝐿 ↾t
(0[,]1)) |
| 42 | 41 | oveq1i 6660 |
. . . . . . . 8
⊢ (II
↾t 𝑊) =
((𝐿 ↾t
(0[,]1)) ↾t 𝑊) |
| 43 | | retop 22565 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
| 44 | 12, 43 | eqeltri 2697 |
. . . . . . . . . 10
⊢ 𝐿 ∈ Top |
| 45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐿 ∈ Top) |
| 46 | | ovexd 6680 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (0[,]1) ∈ V) |
| 47 | | restabs 20969 |
. . . . . . . . 9
⊢ ((𝐿 ∈ Top ∧ 𝑊 ⊆ (0[,]1) ∧ (0[,]1)
∈ V) → ((𝐿
↾t (0[,]1)) ↾t 𝑊) = (𝐿 ↾t 𝑊)) |
| 48 | 45, 24, 46, 47 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝐿 ↾t (0[,]1))
↾t 𝑊) =
(𝐿 ↾t
𝑊)) |
| 49 | 42, 48 | syl5eq 2668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (II ↾t 𝑊) = (𝐿 ↾t 𝑊)) |
| 50 | 49 | oveq1d 6665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((II ↾t 𝑊) Cn 𝐽) = ((𝐿 ↾t 𝑊) Cn 𝐽)) |
| 51 | 38, 50 | eleqtrd 2703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽)) |
| 52 | | cvmtop2 31243 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
| 53 | 17, 52 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐽 ∈ Top) |
| 54 | 4 | toptopon 20722 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 55 | 53, 54 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 56 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → 𝑀 ∈ (1...𝑁)) |
| 57 | | simprr 796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → 𝑧 ∈ 𝑊) |
| 58 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 56, 14, 57 | cvmliftlem3 31269 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑀 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝑊)) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
| 59 | 58 | anassrs 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑀 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝑊) → (𝐺‘𝑧) ∈ (1st ‘(𝑇‘𝑀))) |
| 60 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) = (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) |
| 61 | 59, 60 | fmptd 6385 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)):𝑊⟶(1st ‘(𝑇‘𝑀))) |
| 62 | | frn 6053 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)):𝑊⟶(1st ‘(𝑇‘𝑀)) → ran (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ⊆ (1st ‘(𝑇‘𝑀))) |
| 63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ran (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ⊆ (1st ‘(𝑇‘𝑀))) |
| 64 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23 | cvmliftlem1 31267 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
| 65 | 2 | cvmsrcl 31246 |
. . . . . . . 8
⊢
((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) → (1st ‘(𝑇‘𝑀)) ∈ 𝐽) |
| 66 | | elssuni 4467 |
. . . . . . . 8
⊢
((1st ‘(𝑇‘𝑀)) ∈ 𝐽 → (1st ‘(𝑇‘𝑀)) ⊆ ∪
𝐽) |
| 67 | 64, 65, 66 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇‘𝑀)) ⊆ ∪
𝐽) |
| 68 | 67, 4 | syl6sseqr 3652 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (1st ‘(𝑇‘𝑀)) ⊆ 𝑋) |
| 69 | | cnrest2 21090 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ⊆ (1st ‘(𝑇‘𝑀)) ∧ (1st ‘(𝑇‘𝑀)) ⊆ 𝑋) → ((𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽) ↔ (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀)))))) |
| 70 | 55, 63, 68, 69 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn 𝐽) ↔ (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀)))))) |
| 71 | 51, 70 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (𝐺‘𝑧)) ∈ ((𝐿 ↾t 𝑊) Cn (𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
| 72 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cvmliftlem7 31273 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
| 73 | | cvmcn 31244 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 74 | 3, 4 | cnf 21050 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
| 75 | 17, 73, 74 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝐹:𝐵⟶𝑋) |
| 76 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
| 77 | | fniniseg 6338 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
| 78 | 75, 76, 77 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}) ↔ (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))))) |
| 79 | 72, 78 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁)))) |
| 80 | 79 | simpld 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵) |
| 81 | 79 | simprd 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) = (𝐺‘((𝑀 − 1) / 𝑁))) |
| 82 | 1 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℕ) |
| 83 | 82 | nnred 11035 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ ℝ) |
| 84 | | peano2rem 10348 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈
ℝ) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ ℝ) |
| 86 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 87 | 85, 86 | nndivred 11069 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ ℝ) |
| 88 | 87 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈
ℝ*) |
| 89 | 83, 86 | nndivred 11069 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈ ℝ) |
| 90 | 89 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 / 𝑁) ∈
ℝ*) |
| 91 | 83 | ltm1d 10956 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) < 𝑀) |
| 92 | 86 | nnred 11035 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℝ) |
| 93 | 86 | nngt0d 11064 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 0 < 𝑁) |
| 94 | | ltdiv1 10887 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 − 1) ∈ ℝ ∧
𝑀 ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
| 95 | 85, 83, 92, 93, 94 | syl112anc 1330 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) < 𝑀 ↔ ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁))) |
| 96 | 91, 95 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) < (𝑀 / 𝑁)) |
| 97 | 87, 89, 96 | ltled 10185 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) |
| 98 | | lbicc2 12288 |
. . . . . . . . . . . 12
⊢ ((((𝑀 − 1) / 𝑁) ∈ ℝ* ∧ (𝑀 / 𝑁) ∈ ℝ* ∧ ((𝑀 − 1) / 𝑁) ≤ (𝑀 / 𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
| 99 | 88, 90, 97, 98 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))) |
| 100 | 99, 14 | syl6eleqr 2712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑀 − 1) / 𝑁) ∈ 𝑊) |
| 101 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 14, 100 | cvmliftlem3 31269 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐺‘((𝑀 − 1) / 𝑁)) ∈ (1st ‘(𝑇‘𝑀))) |
| 102 | 81, 101 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀))) |
| 103 | | eqid 2622 |
. . . . . . . . 9
⊢
(℩𝑏
∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) = (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) |
| 104 | 2, 3, 103 | cvmsiota 31259 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ ((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) ∈ (1st ‘(𝑇‘𝑀)))) → ((℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
| 105 | 17, 64, 80, 102, 104 | syl13anc 1328 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀)) ∧ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))) |
| 106 | 105 | simpld 475 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) |
| 107 | 2 | cvmshmeo 31253 |
. . . . . 6
⊢
(((2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))) ∧ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏) ∈ (2nd ‘(𝑇‘𝑀))) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
| 108 | 64, 106, 107 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀))))) |
| 109 | | hmeocnvcn 21564 |
. . . . 5
⊢ ((𝐹 ↾ (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))Homeo(𝐽 ↾t (1st
‘(𝑇‘𝑀)))) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽 ↾t (1st
‘(𝑇‘𝑀))) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
| 110 | 108, 109 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)) ∈ ((𝐽 ↾t (1st
‘(𝑇‘𝑀))) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
| 111 | 28, 71, 110 | cnmpt11f 21467 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) ∈ ((𝐿 ↾t 𝑊) Cn (𝐶 ↾t (℩𝑏 ∈ (2nd
‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))) |
| 112 | 20, 111 | sseldd 3604 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧))) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) |
| 113 | 16, 112 | eqeltrd 2701 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) |