| Step | Hyp | Ref
| Expression |
| 1 | | dvdszrcl 14988 |
. . 3
⊢ (𝑀 ∥ 𝑁 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 2 | | simpll 790 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈
ℤ) |
| 3 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝑚 · (𝑁 / 𝑀)) = (𝑀 · (𝑁 / 𝑀))) |
| 4 | 3 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 5 | 4 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑚 = 𝑀) → ((𝑚 · (𝑁 / 𝑀)) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 6 | | zcn 11382 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 7 | 6 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℂ) |
| 8 | 7 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈
ℂ) |
| 9 | | zcn 11382 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 10 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈
ℂ) |
| 11 | 10 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈
ℂ) |
| 12 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) |
| 13 | 8, 11, 12 | divcan2d 10803 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 14 | 2, 5, 13 | rspcedvd 3317 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | 14 | adantr 481 |
. . . . . 6
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁) |
| 16 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑀 ∥ 𝑁) |
| 17 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℤ) |
| 18 | 17 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈
ℤ) |
| 19 | 2, 12, 18 | 3jca 1242 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 20 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ)) |
| 21 | | dvdsval2 14986 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 23 | 16, 22 | mpbid 222 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 24 | 18 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 25 | | divides 14985 |
. . . . . . 7
⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) |
| 26 | 23, 24, 25 | syl2anc 693 |
. . . . . 6
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → ((𝑁 / 𝑀) ∥ 𝑁 ↔ ∃𝑚 ∈ ℤ (𝑚 · (𝑁 / 𝑀)) = 𝑁)) |
| 27 | 15, 26 | mpbird 247 |
. . . . 5
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ 𝑀 ∥ 𝑁) → (𝑁 / 𝑀) ∥ 𝑁) |
| 28 | 27 | exp31 630 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑀 ∥ 𝑁 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 29 | 28 | com3r 87 |
. . 3
⊢ (𝑀 ∥ 𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁))) |
| 30 | 1, 29 | mpd 15 |
. 2
⊢ (𝑀 ∥ 𝑁 → (𝑀 ≠ 0 → (𝑁 / 𝑀) ∥ 𝑁)) |
| 31 | 30 | imp 445 |
1
⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) |