MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divconjdvds Structured version   Visualization version   Unicode version

Theorem divconjdvds 15037
Description: If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
divconjdvds  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )

Proof of Theorem divconjdvds
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 14988 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpll 790 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  ZZ )
3 oveq1 6657 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  x.  ( N  /  M ) )  =  ( M  x.  ( N  /  M
) ) )
43eqeq1d 2624 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
54adantl 482 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  m  =  M )  ->  (
( m  x.  ( N  /  M ) )  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
6 zcn 11382 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
76adantl 482 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
87adantr 481 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  CC )
9 zcn 11382 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
109adantr 481 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
1110adantr 481 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  e.  CC )
12 simpr 477 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  M  =/=  0 )
138, 11, 12divcan2d 10803 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  x.  ( N  /  M
) )  =  N )
142, 5, 13rspcedvd 3317 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
1514adantr 481 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N )
16 simpr 477 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  M  ||  N )
17 simpr 477 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
1817adantr 481 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  N  e.  ZZ )
192, 12, 183jca 1242 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
2019adantr 481 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ ) )
21 dvdsval2 14986 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
2316, 22mpbid 222 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  e.  ZZ )
2418adantr 481 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  N  e.  ZZ )
25 divides 14985 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  /  M )  ||  N  <->  E. m  e.  ZZ  (
m  x.  ( N  /  M ) )  =  N ) )
2623, 24, 25syl2anc 693 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  (
( N  /  M
)  ||  N  <->  E. m  e.  ZZ  ( m  x.  ( N  /  M
) )  =  N ) )
2715, 26mpbird 247 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  /\  M  ||  N )  ->  ( N  /  M )  ||  N )
2827exp31 630 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( M  ||  N  ->  ( N  /  M
)  ||  N )
) )
2928com3r 87 . . 3  |-  ( M 
||  N  ->  (
( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N
) ) )
301, 29mpd 15 . 2  |-  ( M 
||  N  ->  ( M  =/=  0  ->  ( N  /  M )  ||  N ) )
3130imp 445 1  |-  ( ( M  ||  N  /\  M  =/=  0 )  -> 
( N  /  M
)  ||  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    / cdiv 10684   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-z 11378  df-dvds 14984
This theorem is referenced by:  dvdsdivcl  15038
  Copyright terms: Public domain W3C validator