![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigorthi | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigorthi.1 | ⊢ 𝐴 ∈ ℋ |
eigorthi.2 | ⊢ 𝐵 ∈ ℋ |
eigorthi.3 | ⊢ 𝐶 ∈ ℂ |
eigorthi.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
eigorthi | ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6658 | . . . 4 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = (𝐴 ·ih (𝐷 ·ℎ 𝐵))) | |
2 | eigorthi.4 | . . . . 5 ⊢ 𝐷 ∈ ℂ | |
3 | eigorthi.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
4 | eigorthi.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
5 | his5 27943 | . . . . 5 ⊢ ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) | |
6 | 2, 3, 4, 5 | mp3an 1424 | . . . 4 ⊢ (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)) |
7 | 1, 6 | syl6eq 2672 | . . 3 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) |
8 | oveq1 6657 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = ((𝐶 ·ℎ 𝐴) ·ih 𝐵)) | |
9 | eigorthi.3 | . . . . 5 ⊢ 𝐶 ∈ ℂ | |
10 | ax-his3 27941 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) | |
11 | 9, 3, 4, 10 | mp3an 1424 | . . . 4 ⊢ ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)) |
12 | 8, 11 | syl6eq 2672 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) |
13 | 7, 12 | eqeqan12rd 2640 | . 2 ⊢ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))) |
14 | 3, 4 | hicli 27938 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
15 | 2 | cjcli 13909 | . . . . . . . . 9 ⊢ (∗‘𝐷) ∈ ℂ |
16 | mulcan2 10665 | . . . . . . . . 9 ⊢ (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) | |
17 | 15, 9, 16 | mp3an12 1414 | . . . . . . . 8 ⊢ (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
18 | 14, 17 | mpan 706 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
19 | eqcom 2629 | . . . . . . 7 ⊢ ((∗‘𝐷) = 𝐶 ↔ 𝐶 = (∗‘𝐷)) | |
20 | 18, 19 | syl6bb 276 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷))) |
21 | 20 | biimpcd 239 | . . . . 5 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷))) |
22 | 21 | necon1d 2816 | . . . 4 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0)) |
23 | 22 | com12 32 | . . 3 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0)) |
24 | oveq2 6658 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) | |
25 | oveq2 6658 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0)) | |
26 | 9 | mul01i 10226 | . . . . . 6 ⊢ (𝐶 · 0) = 0 |
27 | 15 | mul01i 10226 | . . . . . 6 ⊢ ((∗‘𝐷) · 0) = 0 |
28 | 26, 27 | eqtr4i 2647 | . . . . 5 ⊢ (𝐶 · 0) = ((∗‘𝐷) · 0) |
29 | 25, 28 | syl6eq 2672 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) |
30 | 24, 29 | eqtr4d 2659 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))) |
31 | 23, 30 | impbid1 215 | . 2 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0)) |
32 | 13, 31 | sylan9bb 736 | 1 ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 · cmul 9941 ∗ccj 13836 ℋchil 27776 ·ℎ csm 27778 ·ih csp 27779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-hfvmul 27862 ax-hfi 27936 ax-his1 27939 ax-his3 27941 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 |
This theorem is referenced by: eigorth 28697 |
Copyright terms: Public domain | W3C validator |