HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   Unicode version

Theorem eigorthi 28696
Description: A necessary and sufficient condition (that holds when  T is a Hermitian operator) for two eigenvectors  A and 
B to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1  |-  A  e. 
~H
eigorthi.2  |-  B  e. 
~H
eigorthi.3  |-  C  e.  CC
eigorthi.4  |-  D  e.  CC
Assertion
Ref Expression
eigorthi  |-  ( ( ( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 6658 . . . 4  |-  ( ( T `  B )  =  ( D  .h  B )  ->  ( A  .ih  ( T `  B ) )  =  ( A  .ih  ( D  .h  B )
) )
2 eigorthi.4 . . . . 5  |-  D  e.  CC
3 eigorthi.1 . . . . 5  |-  A  e. 
~H
4 eigorthi.2 . . . . 5  |-  B  e. 
~H
5 his5 27943 . . . . 5  |-  ( ( D  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( D  .h  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) ) )
62, 3, 4, 5mp3an 1424 . . . 4  |-  ( A 
.ih  ( D  .h  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) )
71, 6syl6eq 2672 . . 3  |-  ( ( T `  B )  =  ( D  .h  B )  ->  ( A  .ih  ( T `  B ) )  =  ( ( * `  D )  x.  ( A  .ih  B ) ) )
8 oveq1 6657 . . . 4  |-  ( ( T `  A )  =  ( C  .h  A )  ->  (
( T `  A
)  .ih  B )  =  ( ( C  .h  A )  .ih  B ) )
9 eigorthi.3 . . . . 5  |-  C  e.  CC
10 ax-his3 27941 . . . . 5  |-  ( ( C  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  (
( C  .h  A
)  .ih  B )  =  ( C  x.  ( A  .ih  B ) ) )
119, 3, 4, 10mp3an 1424 . . . 4  |-  ( ( C  .h  A ) 
.ih  B )  =  ( C  x.  ( A  .ih  B ) )
128, 11syl6eq 2672 . . 3  |-  ( ( T `  A )  =  ( C  .h  A )  ->  (
( T `  A
)  .ih  B )  =  ( C  x.  ( A  .ih  B ) ) )
137, 12eqeqan12rd 2640 . 2  |-  ( ( ( T `  A
)  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  -> 
( ( A  .ih  ( T `  B ) )  =  ( ( T `  A ) 
.ih  B )  <->  ( (
* `  D )  x.  ( A  .ih  B
) )  =  ( C  x.  ( A 
.ih  B ) ) ) )
143, 4hicli 27938 . . . . . . . 8  |-  ( A 
.ih  B )  e.  CC
152cjcli 13909 . . . . . . . . 9  |-  ( * `
 D )  e.  CC
16 mulcan2 10665 . . . . . . . . 9  |-  ( ( ( * `  D
)  e.  CC  /\  C  e.  CC  /\  (
( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 ) )  ->  ( ( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A 
.ih  B ) )  <-> 
( * `  D
)  =  C ) )
1715, 9, 16mp3an12 1414 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 )  -> 
( ( ( * `
 D )  x.  ( A  .ih  B
) )  =  ( C  x.  ( A 
.ih  B ) )  <-> 
( * `  D
)  =  C ) )
1814, 17mpan 706 . . . . . . 7  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  ( * `  D )  =  C ) )
19 eqcom 2629 . . . . . . 7  |-  ( ( * `  D )  =  C  <->  C  =  ( * `  D
) )
2018, 19syl6bb 276 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  C  =  (
* `  D )
) )
2120biimpcd 239 . . . . 5  |-  ( ( ( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( ( A  .ih  B )  =/=  0  ->  C  =  ( * `  D
) ) )
2221necon1d 2816 . . . 4  |-  ( ( ( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( C  =/=  ( * `  D
)  ->  ( A  .ih  B )  =  0 ) )
2322com12 32 . . 3  |-  ( C  =/=  ( * `  D )  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  ->  ( A  .ih  B )  =  0 ) )
24 oveq2 6658 . . . 4  |-  ( ( A  .ih  B )  =  0  ->  (
( * `  D
)  x.  ( A 
.ih  B ) )  =  ( ( * `
 D )  x.  0 ) )
25 oveq2 6658 . . . . 5  |-  ( ( A  .ih  B )  =  0  ->  ( C  x.  ( A  .ih  B ) )  =  ( C  x.  0 ) )
269mul01i 10226 . . . . . 6  |-  ( C  x.  0 )  =  0
2715mul01i 10226 . . . . . 6  |-  ( ( * `  D )  x.  0 )  =  0
2826, 27eqtr4i 2647 . . . . 5  |-  ( C  x.  0 )  =  ( ( * `  D )  x.  0 )
2925, 28syl6eq 2672 . . . 4  |-  ( ( A  .ih  B )  =  0  ->  ( C  x.  ( A  .ih  B ) )  =  ( ( * `  D )  x.  0 ) )
3024, 29eqtr4d 2659 . . 3  |-  ( ( A  .ih  B )  =  0  ->  (
( * `  D
)  x.  ( A 
.ih  B ) )  =  ( C  x.  ( A  .ih  B ) ) )
3123, 30impbid1 215 . 2  |-  ( C  =/=  ( * `  D )  ->  (
( ( * `  D )  x.  ( A  .ih  B ) )  =  ( C  x.  ( A  .ih  B ) )  <->  ( A  .ih  B )  =  0 ) )
3213, 31sylan9bb 736 1  |-  ( ( ( ( T `  A )  =  ( C  .h  A )  /\  ( T `  B )  =  ( D  .h  B ) )  /\  C  =/=  ( * `  D
) )  ->  (
( A  .ih  ( T `  B )
)  =  ( ( T `  A ) 
.ih  B )  <->  ( A  .ih  B )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941   *ccj 13836   ~Hchil 27776    .h csm 27778    .ih csp 27779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvmul 27862  ax-hfi 27936  ax-his1 27939  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  eigorth  28697
  Copyright terms: Public domain W3C validator