MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul01i Structured version   Visualization version   GIF version

Theorem mul01i 10226
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
mul01i (𝐴 · 0) = 0

Proof of Theorem mul01i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul01 10215 . 2 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
31, 2ax-mp 5 1 (𝐴 · 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934  0cc0 9936   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  ine0  10465  msqge0  10549  recextlem2  10658  eqneg  10745  crne0  11013  2t0e0  11183  it0e0  11254  num0h  11509  decmul1  11585  decmul1OLD  11586  discr  13001  sin4lt0  14925  demoivreALT  14931  gcdaddmlem  15245  bezout  15260  139prm  15831  317prm  15833  631prm  15834  1259lem4  15841  2503lem1  15844  2503lem2  15845  4001lem1  15848  4001lem2  15849  4001lem3  15850  4001lem4  15851  odadd1  18251  minveclem7  23206  itg1addlem4  23466  aalioulem3  24089  dcubic  24573  log2ublem3  24675  basellem7  24813  basellem9  24815  lgsdir2  25055  selberg2lem  25239  logdivbnd  25245  pntrsumo1  25254  pntrlog2bndlem5  25270  axpaschlem  25820  axlowdimlem6  25827  nmblolbii  27654  siilem1  27706  minvecolem7  27739  eigorthi  28696  nmbdoplbi  28883  nmcoplbi  28887  nmbdfnlbi  28908  nmcfnlbi  28911  nmopcoi  28954  itgexpif  30684  hgt750lem2  30730  subfacval2  31169  areacirc  33505  139prmALT  41511
  Copyright terms: Public domain W3C validator