| Step | Hyp | Ref
| Expression |
| 1 | | ral0 4076 |
. . . 4
⊢
∀𝑤 ∈
∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) |
| 2 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 3 | | f1oi 6174 |
. . . . . . . 8
⊢ ( I
↾ 𝑁):𝑁–1-1-onto→𝑁 |
| 4 | | f1of 6137 |
. . . . . . . 8
⊢ (( I
↾ 𝑁):𝑁–1-1-onto→𝑁 → ( I ↾ 𝑁):𝑁⟶𝑁) |
| 5 | 3, 4 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ( I ↾ 𝑁):𝑁⟶𝑁) |
| 6 | | mdetuni.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | 6, 6 | elmapd 7871 |
. . . . . . 7
⊢ (𝜑 → (( I ↾ 𝑁) ∈ (𝑁 ↑𝑚 𝑁) ↔ ( I ↾ 𝑁):𝑁⟶𝑁)) |
| 8 | 5, 7 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → ( I ↾ 𝑁) ∈ (𝑁 ↑𝑚 𝑁)) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ( I ↾ 𝑁) ∈ (𝑁 ↑𝑚 𝑁)) |
| 10 | | simplrl 800 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → 𝑦 ∈ 𝐵) |
| 11 | | mdetuni.a |
. . . . . . . . . . . . . . . . 17
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 12 | | mdetuni.k |
. . . . . . . . . . . . . . . . 17
⊢ 𝐾 = (Base‘𝑅) |
| 13 | | mdetuni.b |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 = (Base‘𝐴) |
| 14 | 11, 12, 13 | matbas2i 20228 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
| 15 | | elmapi 7879 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) → 𝑦:(𝑁 × 𝑁)⟶𝐾) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐵 → 𝑦:(𝑁 × 𝑁)⟶𝐾) |
| 17 | 16 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐵 → 𝑦 = (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) |
| 18 | 17 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐵 → (𝐷‘𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)))) |
| 19 | 10, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)))) |
| 20 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) |
| 21 | | mpteq12 4736 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 22 | 21 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
| 23 | 20, 22 | mpan 706 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
(𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
| 24 | 23 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
| 25 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑧 → (𝑎 ∈ (𝑁 ↑𝑚 𝑁) ↔ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) |
| 26 | 25 | anbi2d 740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑧 → ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ↔ (𝜑 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁)))) |
| 27 | | elequ2 2004 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑧 → (𝑤 ∈ 𝑎 ↔ 𝑤 ∈ 𝑧)) |
| 28 | 27 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑧 → if(𝑤 ∈ 𝑎, 1 , 0 ) = if(𝑤 ∈ 𝑧, 1 , 0 )) |
| 29 | 28 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑧 → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑧 → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
| 31 | 30 | eqeq1d 2624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑧 → ((𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ↔ (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 )) |
| 32 | 26, 31 | imbi12d 334 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑧 → (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ))) |
| 33 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 〈𝑏, 𝑐〉 → (𝑤 ∈ 𝑎 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
| 34 | 33 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 〈𝑏, 𝑐〉 → if(𝑤 ∈ 𝑎, 1 , 0 ) = if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) |
| 35 | 34 | mpt2mpt 6752 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) |
| 36 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ (𝑁 ↑𝑚 𝑁) → 𝑎:𝑁⟶𝑁) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → 𝑎:𝑁⟶𝑁) |
| 38 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎:𝑁⟶𝑁 → 𝑎 Fn 𝑁) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → 𝑎 Fn 𝑁) |
| 40 | 39 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑎 Fn 𝑁) |
| 41 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
| 42 | | fnopfvb 6237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 Fn 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎‘𝑏) = 𝑐 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → ((𝑎‘𝑏) = 𝑐 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
| 44 | 43 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → (〈𝑏, 𝑐〉 ∈ 𝑎 ↔ (𝑎‘𝑏) = 𝑐)) |
| 45 | 44 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 ) = if((𝑎‘𝑏) = 𝑐, 1 , 0 )) |
| 46 | 45 | mpt2eq3dva 6719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) |
| 47 | 35, 46 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 )))) |
| 49 | | mdetuni.0g |
. . . . . . . . . . . . . . . . . 18
⊢ 0 =
(0g‘𝑅) |
| 50 | | mdetuni.1r |
. . . . . . . . . . . . . . . . . 18
⊢ 1 =
(1r‘𝑅) |
| 51 | | mdetuni.pg |
. . . . . . . . . . . . . . . . . 18
⊢ + =
(+g‘𝑅) |
| 52 | | mdetuni.tg |
. . . . . . . . . . . . . . . . . 18
⊢ · =
(.r‘𝑅) |
| 53 | | mdetuni.r |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 54 | | mdetuni.ff |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| 55 | | mdetuni.al |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| 56 | | mdetuni.li |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| 57 | | mdetuni.sc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| 58 | | mdetunilem9.id |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) |
| 59 | 11, 13, 12, 49, 50, 51, 52, 6, 53, 54, 55, 56, 57, 58 | mdetunilem8 20425 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎:𝑁⟶𝑁) → (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) = 0 ) |
| 60 | 36, 59 | sylan2 491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) = 0 ) |
| 61 | 48, 60 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ) |
| 62 | 32, 61 | chvarv 2263 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
| 63 | 62 | adantrl 752 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
| 64 | 63 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
| 65 | 19, 24, 64 | 3eqtrd 2660 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘𝑦) = 0 ) |
| 66 | 65 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑𝑚 𝑁))) → (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 67 | 66 | ralrimivva 2971 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 68 | | xpfi 8231 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) |
| 69 | 6, 6, 68 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 × 𝑁) ∈ Fin) |
| 70 | | raleq 3138 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑁 × 𝑁) → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 71 | 70 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑁 × 𝑁) → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 72 | 71 | 2ralbidv 2989 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑁 × 𝑁) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 73 | | mdetunilem9.y |
. . . . . . . . . . 11
⊢ 𝑌 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )} |
| 74 | 72, 73 | elab2g 3353 |
. . . . . . . . . 10
⊢ ((𝑁 × 𝑁) ∈ Fin → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 75 | 69, 74 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 76 | 67, 75 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 × 𝑁) ∈ 𝑌) |
| 77 | | ssid 3624 |
. . . . . . . . 9
⊢ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) |
| 78 | 69 | 3ad2ant1 1082 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝑁 × 𝑁) ∈ Fin) |
| 79 | | sseq1 3626 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → (𝑎 ⊆ (𝑁 × 𝑁) ↔ ∅ ⊆ (𝑁 × 𝑁))) |
| 80 | 79 | 3anbi2d 1404 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
| 81 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → (𝑎 ∈ 𝑌 ↔ ∅ ∈ 𝑌)) |
| 82 | 81 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (¬ 𝑎 ∈ 𝑌 ↔ ¬ ∅ ∈ 𝑌)) |
| 83 | 80, 82 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈
𝑌))) |
| 84 | | sseq1 3626 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ (𝑁 × 𝑁) ↔ 𝑏 ⊆ (𝑁 × 𝑁))) |
| 85 | 84 | 3anbi2d 1404 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
| 86 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑎 ∈ 𝑌 ↔ 𝑏 ∈ 𝑌)) |
| 87 | 86 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (¬ 𝑎 ∈ 𝑌 ↔ ¬ 𝑏 ∈ 𝑌)) |
| 88 | 85, 87 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌))) |
| 89 | | sseq1 3626 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁))) |
| 90 | 89 | 3anbi2d 1404 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
| 91 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∈ 𝑌 ↔ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
| 92 | 91 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (¬ 𝑎 ∈ 𝑌 ↔ ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
| 93 | 90, 92 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
| 94 | | sseq1 3626 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑁 × 𝑁) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁))) |
| 95 | 94 | 3anbi2d 1404 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑁 × 𝑁) → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
| 96 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑁 × 𝑁) → (𝑎 ∈ 𝑌 ↔ (𝑁 × 𝑁) ∈ 𝑌)) |
| 97 | 96 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑁 × 𝑁) → (¬ 𝑎 ∈ 𝑌 ↔ ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
| 98 | 95, 97 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑁 × 𝑁) → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌))) |
| 99 | | simp3 1063 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈
𝑌) |
| 100 | | ssun1 3776 |
. . . . . . . . . . . . . . . 16
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
| 101 | | sstr2 3610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁))) |
| 102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁)) |
| 103 | 102 | 3anim2i 1249 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)) |
| 104 | 103 | imim1i 63 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌)) |
| 105 | | simpl1 1064 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝜑) |
| 106 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
| 107 | | simprll 802 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑎 ∈ 𝐵) |
| 108 | 11, 12, 13 | matbas2i 20228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
| 109 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈ 𝐵 → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
| 111 | 110 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
| 112 | 111 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎 = (𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒))) |
| 113 | 112 | reseq1d 5395 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁))) |
| 114 | 53 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 115 | | ringgrp 18552 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 116 | 114, 115 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 117 | 116 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑅 ∈ Grp) |
| 118 | 111 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
| 119 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
| 120 | 119 | unssbd 3791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → {𝑐} ⊆ (𝑁 × 𝑁)) |
| 121 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ 𝑐 ∈ V |
| 122 | 121 | snss 4316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑐 ∈ (𝑁 × 𝑁) ↔ {𝑐} ⊆ (𝑁 × 𝑁)) |
| 123 | 120, 122 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑐 ∈ (𝑁 × 𝑁)) |
| 124 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑐 ∈ (𝑁 × 𝑁) → (1st ‘𝑐) ∈ 𝑁) |
| 125 | 123, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (1st ‘𝑐) ∈ 𝑁) |
| 126 | 125 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → {(1st ‘𝑐)} ⊆ 𝑁) |
| 127 | | xpss1 5228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
({(1st ‘𝑐)} ⊆ 𝑁 → ({(1st ‘𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁)) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ({(1st ‘𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁)) |
| 129 | 128 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑒 ∈ (𝑁 × 𝑁)) |
| 130 | 118, 129 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) ∈ 𝐾) |
| 131 | 12, 50 | ringidcl 18568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐾) |
| 132 | 114, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 1 ∈ 𝐾) |
| 133 | 12, 49 | ring0cl 18569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
| 134 | 114, 133 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 0 ∈ 𝐾) |
| 135 | 132, 134 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
| 136 | 135 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
| 137 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(-g‘𝑅) = (-g‘𝑅) |
| 138 | 12, 51, 137 | grpnpcan 17507 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾 ∧ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 )) = (𝑎‘𝑒)) |
| 139 | 117, 130,
136, 138 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 )) = (𝑎‘𝑒)) |
| 140 | 139 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 141 | 140 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎‘𝑒) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 142 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 143 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑒 ∈ 𝑑, 1 , 0 )) |
| 144 | 142, 143 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 145 | 144 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 146 | 141, 145 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 147 | 12, 51, 49 | grplid 17452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾) → ( 0 + (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 148 | 117, 130,
147 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → ( 0 + (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 149 | 148 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = ( 0 + (𝑎‘𝑒))) |
| 150 | 149 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎‘𝑒) = ( 0 + (𝑎‘𝑒))) |
| 151 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = 0 ) |
| 152 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 153 | 151, 152 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = ( 0 + (𝑎‘𝑒))) |
| 154 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = ( 0 + (𝑎‘𝑒))) |
| 155 | 150, 154 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 156 | 146, 155 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 157 | 156 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 158 | | snfi 8038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
{(1st ‘𝑐)} ∈ Fin |
| 159 | 6 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 160 | | xpfi 8231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(({(1st ‘𝑐)} ∈ Fin ∧ 𝑁 ∈ Fin) → ({(1st
‘𝑐)} × 𝑁) ∈ Fin) |
| 161 | 158, 159,
160 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ({(1st ‘𝑐)} × 𝑁) ∈ Fin) |
| 162 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈
V |
| 163 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(0g‘𝑅) ∈ V |
| 164 | 49, 163 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 0 ∈
V |
| 165 | 162, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈
V |
| 166 | 165 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈
V) |
| 167 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(1r‘𝑅) ∈ V |
| 168 | 50, 167 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
V |
| 169 | 168, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈
V |
| 170 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑎‘𝑒) ∈ V |
| 171 | 169, 170 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ V |
| 172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ V) |
| 173 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) → (1st
‘𝑒) ∈
{(1st ‘𝑐)}) |
| 174 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) ∈ {(1st ‘𝑐)} → (1st
‘𝑒) = (1st
‘𝑐)) |
| 175 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) = (1st ‘𝑐) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
| 176 | 173, 174,
175 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) → if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
| 177 | 176 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) ↦ if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
| 178 | 177 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ))) |
| 179 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 180 | 161, 166,
172, 178, 179 | offval2 6914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 181 | 157, 180 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒)) = ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 182 | 128 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒))) |
| 183 | 128 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
| 184 | 128 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 185 | 183, 184 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) = ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 186 | 181, 182,
185 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
| 187 | 113, 186 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
| 188 | 112 | reseq1d 5395 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 189 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → (1st ‘𝑒) ∈ (𝑁 ∖ {(1st ‘𝑐)})) |
| 190 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) ∈ (𝑁 ∖ {(1st ‘𝑐)}) → (1st
‘𝑒) ≠
(1st ‘𝑐)) |
| 191 | 189, 190 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → (1st ‘𝑒) ≠ (1st
‘𝑐)) |
| 192 | 191 | neneqd 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → ¬ (1st ‘𝑒) = (1st ‘𝑐)) |
| 193 | 192 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → ¬ (1st ‘𝑒) = (1st ‘𝑐)) |
| 194 | 193 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 195 | 194 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
| 196 | | difss 3737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∖ {(1st
‘𝑐)}) ⊆ 𝑁 |
| 197 | | xpss1 5228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∖ {(1st
‘𝑐)}) ⊆ 𝑁 → ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁)) |
| 198 | 196, 197 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) |
| 199 | | resmpt 5449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
| 200 | 198, 199 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
| 201 | | resmpt 5449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
| 202 | 198, 201 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
| 203 | 195, 200,
202 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 204 | 188, 203 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 205 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 = 𝑐 → (1st ‘𝑒) = (1st ‘𝑐)) |
| 206 | 193, 205 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → ¬ 𝑒 = 𝑐) |
| 207 | 206 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 208 | 207 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
| 209 | | resmpt 5449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 210 | 198, 209 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
| 211 | 208, 210,
202 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 212 | 188, 211 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 213 | 135 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
| 214 | 111 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → (𝑎‘𝑒) ∈ 𝐾) |
| 215 | 213, 214 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
| 216 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) |
| 217 | 215, 216 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
| 218 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(Base‘𝑅)
∈ V |
| 219 | 12, 218 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐾 ∈ V |
| 220 | 68 | anidms 677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
| 221 | 159, 220 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
| 222 | | elmapg 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 223 | 219, 221,
222 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 224 | 217, 223 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
| 225 | 11, 12 | matbas2 20227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑𝑚
(𝑁 × 𝑁)) = (Base‘𝐴)) |
| 226 | 159, 114,
225 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 227 | 226, 13 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐾 ↑𝑚 (𝑁 × 𝑁)) = 𝐵) |
| 228 | 224, 227 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
| 229 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 230 | 116 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 𝑅 ∈ Grp) |
| 231 | 12, 137 | grpsubcl 17495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾 ∧ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
| 232 | 230, 214,
213, 231 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
| 233 | 134 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 0 ∈ 𝐾) |
| 234 | 232, 233 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈ 𝐾) |
| 235 | 234, 214 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
| 236 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) |
| 237 | 235, 236 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
| 238 | | elmapg 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 239 | 219, 221,
238 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 240 | 237, 239 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
| 241 | 240, 227 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
| 242 | 56 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| 243 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = 𝑎 → (𝑥 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({𝑤} × 𝑁))) |
| 244 | 243 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))))) |
| 245 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = 𝑎 → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
| 246 | 245 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 247 | 245 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 248 | 244, 246,
247 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑎 → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 249 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → (𝐷‘𝑥) = (𝐷‘𝑎)) |
| 250 | 249 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑎 → ((𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| 251 | 248, 250 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑎 → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))))) |
| 252 | 251 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑎 → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))))) |
| 253 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑦 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
| 254 | 253 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁)))) |
| 255 | 254 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))))) |
| 256 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
| 257 | 256 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 258 | 255, 257 | 3anbi12d 1400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 259 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝐷‘𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))))) |
| 260 | 259 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) + (𝐷‘𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))) |
| 261 | 260 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
| 262 | 258, 261 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))))) |
| 263 | 262 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))))) |
| 264 | 252, 263 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ 𝐵 ∧ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
| 265 | 229, 241,
242, 264 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
| 266 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
| 267 | 266 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)))) |
| 268 | 267 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))))) |
| 269 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
| 270 | 269 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 271 | 268, 270 | 3anbi13d 1401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 272 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 273 | 272 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
| 274 | 273 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
| 275 | 271, 274 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))))) |
| 276 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → {𝑤} = {(1st ‘𝑐)}) |
| 277 | 276 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ({𝑤} × 𝑁) = ({(1st ‘𝑐)} × 𝑁)) |
| 278 | 277 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (𝑎 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁))) |
| 279 | 277 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
| 280 | 277 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
| 281 | 279, 280 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
| 282 | 278, 281 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))))) |
| 283 | 276 | difeq2d 3728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → (𝑁 ∖ {𝑤}) = (𝑁 ∖ {(1st ‘𝑐)})) |
| 284 | 283 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑁 ∖ {𝑤}) × 𝑁) = ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) |
| 285 | 284 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 286 | 284 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 287 | 285, 286 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
| 288 | 284 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 289 | 285, 288 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
| 290 | 282, 287,
289 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = (1st ‘𝑐) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))))) |
| 291 | 290 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = (1st ‘𝑐) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) ↔ (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))))) |
| 292 | 275, 291 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (1st ‘𝑐) ∈ 𝑁) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) → (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
| 293 | 228, 125,
265, 292 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
| 294 | 187, 204,
212, 293 | mp3and 1427 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
| 295 | 105, 106,
107, 294 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
| 296 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑐 → (𝑎‘𝑒) = (𝑎‘𝑐)) |
| 297 | | elequ1 1997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑒 = 𝑐 → (𝑒 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑)) |
| 298 | 297 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑐 → if(𝑒 ∈ 𝑑, 1 , 0 ) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 299 | 296, 298 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 300 | 299 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 301 | 111, 123 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎‘𝑐) ∈ 𝐾) |
| 302 | 132, 134 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑐 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
| 303 | 12, 137 | grpsubcl 17495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑐) ∈ 𝐾 ∧ if(𝑐 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
| 304 | 116, 301,
302, 303 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
| 305 | 12, 52, 50 | ringridm 18572 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 306 | 114, 304,
305 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 307 | 306 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 308 | 300, 307 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
| 309 | 142 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 ))) |
| 310 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 1 ) |
| 311 | 310 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = 𝑐 → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
| 312 | 311 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
| 313 | 308, 309,
312 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
| 314 | 12, 52, 49 | ringrz 18588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) = 0 ) |
| 315 | 114, 304,
314 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) = 0 ) |
| 316 | 315 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 0 = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
| 317 | 316 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → 0 = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
| 318 | 151 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = 0 ) |
| 319 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 0 ) |
| 320 | 319 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑒 = 𝑐 → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
| 321 | 320 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
| 322 | 317, 318,
321 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
| 323 | 313, 322 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
| 324 | 173 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (1st ‘𝑒) ∈ {(1st
‘𝑐)}) |
| 325 | 324, 174 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (1st ‘𝑒) = (1st ‘𝑐)) |
| 326 | 325 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
| 327 | 325 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, 1 , 0 )) |
| 328 | 327 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
| 329 | 323, 326,
328 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
| 330 | 329 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
| 331 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈
V) |
| 332 | 168, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, 1 , 0 ) ∈
V |
| 333 | 332, 170 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ V |
| 334 | 333 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ V) |
| 335 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 336 | 335 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )))) |
| 337 | 128 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
| 338 | 161, 331,
334, 336, 337 | offval2 6914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
| 339 | 330, 183,
338 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
| 340 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 341 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
| 342 | 340, 341 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
| 343 | 193, 342 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
| 344 | 343 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
| 345 | | resmpt 5449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
| 346 | 198, 345 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
| 347 | 344, 200,
346 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 348 | 132, 134 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾) |
| 349 | 348 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾) |
| 350 | 349, 214 | ifcld 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
| 351 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
| 352 | 350, 351 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
| 353 | | elmapg 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 354 | 219, 221,
353 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
| 355 | 352, 354 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑𝑚 (𝑁 × 𝑁))) |
| 356 | 355, 227 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
| 357 | 57 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| 358 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
| 359 | 358 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))))) |
| 360 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
| 361 | 360 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 362 | 359, 361 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 363 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝐷‘𝑥) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))))) |
| 364 | 363 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧)))) |
| 365 | 362, 364 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))))) |
| 366 | 365 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))))) |
| 367 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → {𝑦} = {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) |
| 368 | 367 | xpeq2d 5139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (({𝑤} × 𝑁) × {𝑦}) = (({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})) |
| 369 | 368 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁)))) |
| 370 | 369 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))))) |
| 371 | 370 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 372 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (𝑦 · (𝐷‘𝑧)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))) |
| 373 | 372 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
| 374 | 371, 373 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))))) |
| 375 | 374 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))))) |
| 376 | 366, 375 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
| 377 | 241, 304,
357, 376 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
| 378 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
| 379 | 378 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)))) |
| 380 | 379 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))))) |
| 381 | | reseq1 5390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
| 382 | 381 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
| 383 | 380, 382 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
| 384 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
| 385 | 384 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) |
| 386 | 385 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
| 387 | 383, 386 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))))) |
| 388 | 277 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → (({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (({(1st
‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})) |
| 389 | 277 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
| 390 | 388, 389 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
| 391 | 279, 390 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))))) |
| 392 | 284 | reseq2d 5396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
| 393 | 286, 392 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
| 394 | 391, 393 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))))) |
| 395 | 394 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = (1st ‘𝑐) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))))) |
| 396 | 387, 395 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (1st ‘𝑐) ∈ 𝑁) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
| 397 | 356, 125,
377, 396 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})
∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
| 398 | 339, 347,
397 | mp2and 715 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) |
| 399 | 398 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
| 400 | 105, 106,
107, 399 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
| 401 | | simpl3 1066 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌) |
| 402 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) |
| 403 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 404 | | ralss 3668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )))) |
| 405 | 100, 404 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑤 ∈
𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 406 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((1st ‘𝑤) = (1st ‘𝑐) → if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, 1 , 0 )) |
| 407 | 406 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, 1 , 0 )) |
| 408 | | ibar 525 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((1st ‘𝑤) = (1st ‘𝑐) → ((2nd ‘𝑤) = (2nd ‘𝑐) ↔ ((1st
‘𝑤) = (1st
‘𝑐) ∧
(2nd ‘𝑤) =
(2nd ‘𝑐)))) |
| 409 | 408 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((2nd
‘𝑤) = (2nd
‘𝑐) ↔
((1st ‘𝑤)
= (1st ‘𝑐)
∧ (2nd ‘𝑤) = (2nd ‘𝑐)))) |
| 410 | | relxp 5227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ Rel
(𝑁 × 𝑁) |
| 411 | | simpl2 1065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
| 412 | 411 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → 𝑤 ∈ (𝑁 × 𝑁)) |
| 413 | 412 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ (𝑁 × 𝑁)) |
| 414 | | 1st2nd 7214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((Rel
(𝑁 × 𝑁) ∧ 𝑤 ∈ (𝑁 × 𝑁)) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 415 | 410, 413,
414 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 416 | 415 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 417 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) |
| 418 | | elmapi 7879 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑑 ∈ (𝑁 ↑𝑚 𝑁) → 𝑑:𝑁⟶𝑁) |
| 419 | 418 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → 𝑑:𝑁⟶𝑁) |
| 420 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (1st
‘𝑐) ∈ 𝑁) |
| 421 | | xp2nd 7199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑐 ∈ (𝑁 × 𝑁) → (2nd ‘𝑐) ∈ 𝑁) |
| 422 | 123, 421 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (2nd ‘𝑐) ∈ 𝑁) |
| 423 | 422 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (2nd
‘𝑐) ∈ 𝑁) |
| 424 | | fsets 15891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ 𝑑:𝑁⟶𝑁) ∧ (1st ‘𝑐) ∈ 𝑁 ∧ (2nd ‘𝑐) ∈ 𝑁) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁) |
| 425 | 417, 419,
420, 423, 424 | syl211anc 1332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁) |
| 426 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉):𝑁⟶𝑁 → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) Fn 𝑁) |
| 427 | 425, 426 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) Fn 𝑁) |
| 428 | 427 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) Fn 𝑁) |
| 429 | | xp1st 7198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (1st ‘𝑤) ∈ 𝑁) |
| 430 | 412, 429 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (1st ‘𝑤) ∈ 𝑁) |
| 431 | 430 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (1st
‘𝑤) ∈ 𝑁) |
| 432 | | fnopfvb 6237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) Fn 𝑁 ∧ (1st
‘𝑤) ∈ 𝑁) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 433 | 428, 431,
432 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 434 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((1st ‘𝑤) = (1st ‘𝑐) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) = ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐))) |
| 435 | 434 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) = ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐))) |
| 436 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ 𝑑 ∈ V |
| 437 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(1st ‘𝑐) ∈ V |
| 438 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(2nd ‘𝑐) ∈ V |
| 439 | | fvsetsid 15890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑑 ∈ V ∧ (1st
‘𝑐) ∈ V ∧
(2nd ‘𝑐)
∈ V) → ((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st ‘𝑐)) = (2nd
‘𝑐)) |
| 440 | 436, 437,
438, 439 | mp3an 1424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐)) = (2nd
‘𝑐) |
| 441 | 435, 440 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑐)) |
| 442 | 441 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ (2nd ‘𝑐) = (2nd ‘𝑤))) |
| 443 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
((2nd ‘𝑐) = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = (2nd ‘𝑐)) |
| 444 | 442, 443 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ (2nd ‘𝑤) = (2nd ‘𝑐))) |
| 445 | 416, 433,
444 | 3bitr2rd 297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((2nd
‘𝑤) = (2nd
‘𝑐) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 446 | 123 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑐 ∈ (𝑁 × 𝑁)) |
| 447 | | xpopth 7207 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ 𝑐 ∈ (𝑁 × 𝑁)) → (((1st ‘𝑤) = (1st ‘𝑐) ∧ (2nd
‘𝑤) = (2nd
‘𝑐)) ↔ 𝑤 = 𝑐)) |
| 448 | 413, 446,
447 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((1st
‘𝑤) = (1st
‘𝑐) ∧
(2nd ‘𝑤) =
(2nd ‘𝑐))
↔ 𝑤 = 𝑐)) |
| 449 | 409, 445,
448 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 = 𝑐 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 450 | 449 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if(𝑤 = 𝑐, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 451 | 407, 450 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 452 | 451 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 453 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑤 ∈ {𝑐} → 𝑤 = 𝑐) |
| 454 | 453 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑤 ∈ {𝑐} → (1st ‘𝑤) = (1st ‘𝑐)) |
| 455 | 454 | con3i 150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ ¬ 𝑤 ∈
{𝑐}) |
| 456 | 455 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ¬ 𝑤 ∈ {𝑐}) |
| 457 | | elun 3753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑤 ∈ (𝑏 ∪ {𝑐}) ↔ (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
| 458 | 457 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑤 ∈ (𝑏 ∪ {𝑐}) → (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
| 459 | 458 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
| 460 | | orel2 398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
𝑤 ∈ {𝑐} → ((𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐}) → 𝑤 ∈ 𝑏)) |
| 461 | 456, 459,
460 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ 𝑏) |
| 462 | 461 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ 𝑏) |
| 463 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 464 | 463 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 465 | | setsres 15901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑑 ∈ V → ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ↾ (V
∖ {(1st ‘𝑐)})) = (𝑑 ↾ (V ∖ {(1st
‘𝑐)}))) |
| 466 | 465 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑑 ∈ V →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})))) |
| 467 | 436, 466 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 ↾ (V ∖ {(1st
‘𝑐)})))) |
| 468 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(1st ‘𝑤) ∈ V |
| 469 | 468 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ∈ V) |
| 470 | | df-ne 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((1st ‘𝑤) ≠ (1st ‘𝑐) ↔ ¬ (1st
‘𝑤) = (1st
‘𝑐)) |
| 471 | 470 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ≠ (1st ‘𝑐)) |
| 472 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) ↔
((1st ‘𝑤)
∈ V ∧ (1st ‘𝑤) ≠ (1st ‘𝑐))) |
| 473 | 469, 471,
472 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)})) |
| 474 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(2nd ‘𝑤) ∈ V |
| 475 | 474 | opres 5406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 476 | 475 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 477 | | 1st2nd2 7205 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑤 ∈ (𝑁 × 𝑁) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 478 | 477 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 479 | 478 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 480 | 476, 479 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 481 | 412, 473,
480 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 482 | 474 | opres 5406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
| 483 | 482 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
𝑑)) |
| 484 | 477 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (𝑤 ∈ 𝑑 ↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
| 485 | 484 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (𝑤 ∈ 𝑑 ↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
| 486 | 483, 485 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 𝑤 ∈ 𝑑)) |
| 487 | 412, 473,
486 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 𝑤 ∈ 𝑑)) |
| 488 | 467, 481,
487 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ 𝑑 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 489 | 488 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 490 | 464, 489 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 491 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 492 | 491 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
(if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 493 | 490, 492 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 494 | 462, 493 | embantd 59 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 495 | 452, 494 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 496 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑒 = 𝑤 → (1st ‘𝑒) = (1st ‘𝑤)) |
| 497 | 496 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → ((1st ‘𝑒) = (1st ‘𝑐) ↔ (1st
‘𝑤) = (1st
‘𝑐))) |
| 498 | | equequ1 1952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑒 = 𝑤 → (𝑒 = 𝑐 ↔ 𝑤 = 𝑐)) |
| 499 | 498 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → if(𝑒 = 𝑐, 1 , 0 ) = if(𝑤 = 𝑐, 1 , 0 )) |
| 500 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → (𝑎‘𝑒) = (𝑎‘𝑤)) |
| 501 | 497, 499,
500 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑒 = 𝑤 → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤))) |
| 502 | 168, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ if(𝑤 = 𝑐, 1 , 0 ) ∈
V |
| 503 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑎‘𝑤) ∈ V |
| 504 | 502, 503 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) ∈ V |
| 505 | 501, 351,
504 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤))) |
| 506 | 505 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 507 | 412, 506 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 508 | 495, 507 | sylibrd 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 509 | 508 | ralimdva 2962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 510 | 405, 509 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 511 | 510 | impr 649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ (𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 512 | 511 | 3adantr1 1220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 513 | 356 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
| 514 | | simpr2 1068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) |
| 515 | 514, 418 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑:𝑁⟶𝑁) |
| 516 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (1st
‘𝑐) ∈ 𝑁) |
| 517 | 422 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (2nd
‘𝑐) ∈ 𝑁) |
| 518 | 514, 515,
516, 517, 424 | syl211anc 1332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉):𝑁⟶𝑁) |
| 519 | 159, 159 | elmapd 7871 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ∈ (𝑁 ↑𝑚
𝑁) ↔ (𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉):𝑁⟶𝑁)) |
| 520 | 519 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ∈
(𝑁
↑𝑚 𝑁) ↔ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁)) |
| 521 | 518, 520 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ∈
(𝑁
↑𝑚 𝑁)) |
| 522 | | simpr1 1067 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌) |
| 523 | | raleq 3138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 524 | 523 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 525 | 524 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 526 | 525, 73 | elab2g 3353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ((𝑏 ∪ {𝑐}) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 527 | 526 | ibi 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 528 | 522, 527 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 529 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑦‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤)) |
| 530 | 529 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 531 | 530 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 532 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
| 533 | 532 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 534 | 531, 533 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
| 535 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
| 536 | 535 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
| 537 | 536 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 538 | 537 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
| 539 | 538 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
| 540 | 534, 539 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ∈ (𝑁 ↑𝑚
𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 541 | 513, 521,
528, 540 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 542 | 512, 541 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) |
| 543 | 542 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
| 544 | 119 | unssad 3790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑏 ⊆ (𝑁 × 𝑁)) |
| 545 | 544 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑏 ⊆ (𝑁 × 𝑁)) |
| 546 | | simpr3 1069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 547 | | ssel2 3598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) → 𝑤 ∈ (𝑁 × 𝑁)) |
| 548 | 547 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → 𝑤 ∈ (𝑁 × 𝑁)) |
| 549 | | elequ1 1997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑒 = 𝑤 → (𝑒 ∈ 𝑑 ↔ 𝑤 ∈ 𝑑)) |
| 550 | 549 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑒 = 𝑤 → if(𝑒 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 551 | 498, 550,
500 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑤 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
| 552 | 168, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ if(𝑤 ∈ 𝑑, 1 , 0 ) ∈
V |
| 553 | 552, 503 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) ∈ V |
| 554 | 551, 216,
553 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
| 555 | 548, 554 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
| 556 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 557 | 556 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 558 | | ifid 4125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 ) |
| 559 | 557, 558 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 560 | 555, 559 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 561 | 560 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 562 | 561 | ralimdva 2962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 ⊆ (𝑁 × 𝑁) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 563 | 545, 546,
562 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 564 | 143, 298 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 565 | 168, 164 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑐 ∈ 𝑑, 1 , 0 ) ∈
V |
| 566 | 564, 216,
565 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 567 | 123, 566 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 568 | 567 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 569 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = 𝑐 → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐)) |
| 570 | | elequ1 1997 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = 𝑐 → (𝑤 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑)) |
| 571 | 570 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = 𝑐 → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
| 572 | 569, 571 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = 𝑐 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 573 | 572 | ralunsn 4422 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ V → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )))) |
| 574 | 121, 573 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑤 ∈
(𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 ))) |
| 575 | 563, 568,
574 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 576 | 228 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
| 577 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑦‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤)) |
| 578 | 577 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 579 | 578 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 580 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
| 581 | 580 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 582 | 579, 581 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
| 583 | | elequ2 2004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑑 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑑)) |
| 584 | 583 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑑 → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
| 585 | 584 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑑 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 586 | 585 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑑 → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 587 | 586 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 𝑑 → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
| 588 | 582, 587 | rspc2va 3323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 589 | 576, 514,
528, 588 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
| 590 | 575, 589 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) |
| 591 | 543, 590 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 )) |
| 592 | 315 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = ( 0 + 0 )) |
| 593 | 12, 51, 49 | grplid 17452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐾) → ( 0 + 0 ) = 0 ) |
| 594 | 116, 134,
593 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
| 595 | 592, 594 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 ) |
| 596 | 595 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 ) |
| 597 | 591, 596 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = 0 ) |
| 598 | 105, 106,
107, 401, 402, 403, 597 | syl33anc 1341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = 0 ) |
| 599 | 295, 400,
598 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘𝑎) = 0 ) |
| 600 | 599 | expr 643 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ (𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑𝑚 𝑁))) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
| 601 | 600 | ralrimivva 2971 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑎 ∈ 𝐵 ∀𝑑 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
| 602 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑦 → (𝑎‘𝑤) = (𝑦‘𝑤)) |
| 603 | 602 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑦 → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 604 | 603 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑦 → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
| 605 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑦 → (𝐷‘𝑎) = (𝐷‘𝑦)) |
| 606 | 605 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑦 → ((𝐷‘𝑎) = 0 ↔ (𝐷‘𝑦) = 0 )) |
| 607 | 604, 606 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑦 → ((∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 608 | | elequ2 2004 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = 𝑧 → (𝑤 ∈ 𝑑 ↔ 𝑤 ∈ 𝑧)) |
| 609 | 608 | ifbid 4108 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = 𝑧 → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ 𝑧, 1 , 0 )) |
| 610 | 609 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = 𝑧 → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 611 | 610 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = 𝑧 → (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 612 | 611 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = 𝑧 → ((∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 613 | 607, 612 | cbvral2v 3179 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑎 ∈
𝐵 ∀𝑑 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 614 | 601, 613 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 615 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑏 ∈ V |
| 616 | | raleq 3138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑏 → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 617 | 616 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 618 | 617 | 2ralbidv 2989 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑏 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 619 | 615, 618,
73 | elab2 3354 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 620 | 614, 619 | sylibr 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → 𝑏 ∈ 𝑌) |
| 621 | 620 | 3expia 1267 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → ((𝑏 ∪ {𝑐}) ∈ 𝑌 → 𝑏 ∈ 𝑌)) |
| 622 | 621 | con3d 148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
| 623 | 622 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
| 624 | 623 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
| 625 | 624 | a2d 29 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
| 626 | 104, 625 | syl5 34 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
| 627 | 83, 88, 93, 98, 99, 626 | findcard2s 8201 |
. . . . . . . . . . 11
⊢ ((𝑁 × 𝑁) ∈ Fin → ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
| 628 | 78, 627 | mpcom 38 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌) |
| 629 | 628 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) → (¬ ∅ ∈ 𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌))) |
| 630 | 77, 629 | mpi 20 |
. . . . . . . 8
⊢ (𝜑 → (¬ ∅ ∈
𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
| 631 | 76, 630 | mt4d 152 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝑌) |
| 632 | 631 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∅ ∈ 𝑌) |
| 633 | | 0ex 4790 |
. . . . . . 7
⊢ ∅
∈ V |
| 634 | | raleq 3138 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 635 | 634 | imbi1d 331 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 636 | 635 | 2ralbidv 2989 |
. . . . . . 7
⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
| 637 | 633, 636,
73 | elab2 3354 |
. . . . . 6
⊢ (∅
∈ 𝑌 ↔
∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 638 | 632, 637 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
| 639 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝑦‘𝑤) = (𝑎‘𝑤)) |
| 640 | 639 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 641 | 640 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → (∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
| 642 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → (𝐷‘𝑦) = (𝐷‘𝑎)) |
| 643 | 642 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → ((𝐷‘𝑦) = 0 ↔ (𝐷‘𝑎) = 0 )) |
| 644 | 641, 643 | imbi12d 334 |
. . . . . 6
⊢ (𝑦 = 𝑎 → ((∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑎) = 0 ))) |
| 645 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑧 = ( I ↾ 𝑁) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( I ↾ 𝑁))) |
| 646 | 645 | ifbid 4108 |
. . . . . . . . 9
⊢ (𝑧 = ( I ↾ 𝑁) → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 )) |
| 647 | 646 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑧 = ( I ↾ 𝑁) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ))) |
| 648 | 647 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑧 = ( I ↾ 𝑁) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ))) |
| 649 | 648 | imbi1d 331 |
. . . . . 6
⊢ (𝑧 = ( I ↾ 𝑁) → ((∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 ))) |
| 650 | 644, 649 | rspc2va 3323 |
. . . . 5
⊢ (((𝑎 ∈ 𝐵 ∧ ( I ↾ 𝑁) ∈ (𝑁 ↑𝑚 𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
| 651 | 2, 9, 638, 650 | syl21anc 1325 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
| 652 | 1, 651 | mpi 20 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐷‘𝑎) = 0 ) |
| 653 | 652 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↦ (𝐷‘𝑎)) = (𝑎 ∈ 𝐵 ↦ 0 )) |
| 654 | 54 | feqmptd 6249 |
. 2
⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝐵 ↦ (𝐷‘𝑎))) |
| 655 | | fconstmpt 5163 |
. . 3
⊢ (𝐵 × { 0 }) = (𝑎 ∈ 𝐵 ↦ 0 ) |
| 656 | 655 | a1i 11 |
. 2
⊢ (𝜑 → (𝐵 × { 0 }) = (𝑎 ∈ 𝐵 ↦ 0 )) |
| 657 | 653, 654,
656 | 3eqtr4d 2666 |
1
⊢ (𝜑 → 𝐷 = (𝐵 × { 0 })) |