MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem9 Structured version   Visualization version   GIF version

Theorem mdetunilem9 20426
Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem9.id (𝜑 → (𝐷‘(1r𝐴)) = 0 )
mdetunilem9.y 𝑌 = {𝑥 ∣ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )}
Assertion
Ref Expression
mdetunilem9 (𝜑𝐷 = (𝐵 × { 0 }))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐾,𝑦,𝑧,𝑤   𝑥,𝑁,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝑥, · ,𝑦,𝑧,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, 0 ,𝑦,𝑧,𝑤   𝑥, 1 ,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑌(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem mdetunilem9
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4076 . . . 4 𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 )
2 simpr 477 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
3 f1oi 6174 . . . . . . . 8 ( I ↾ 𝑁):𝑁1-1-onto𝑁
4 f1of 6137 . . . . . . . 8 (( I ↾ 𝑁):𝑁1-1-onto𝑁 → ( I ↾ 𝑁):𝑁𝑁)
53, 4mp1i 13 . . . . . . 7 (𝜑 → ( I ↾ 𝑁):𝑁𝑁)
6 mdetuni.n . . . . . . . 8 (𝜑𝑁 ∈ Fin)
76, 6elmapd 7871 . . . . . . 7 (𝜑 → (( I ↾ 𝑁) ∈ (𝑁𝑚 𝑁) ↔ ( I ↾ 𝑁):𝑁𝑁))
85, 7mpbird 247 . . . . . 6 (𝜑 → ( I ↾ 𝑁) ∈ (𝑁𝑚 𝑁))
98adantr 481 . . . . 5 ((𝜑𝑎𝐵) → ( I ↾ 𝑁) ∈ (𝑁𝑚 𝑁))
10 simplrl 800 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → 𝑦𝐵)
11 mdetuni.a . . . . . . . . . . . . . . . . 17 𝐴 = (𝑁 Mat 𝑅)
12 mdetuni.k . . . . . . . . . . . . . . . . 17 𝐾 = (Base‘𝑅)
13 mdetuni.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐴)
1411, 12, 13matbas2i 20228 . . . . . . . . . . . . . . . 16 (𝑦𝐵𝑦 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
15 elmapi 7879 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → 𝑦:(𝑁 × 𝑁)⟶𝐾)
1614, 15syl 17 . . . . . . . . . . . . . . 15 (𝑦𝐵𝑦:(𝑁 × 𝑁)⟶𝐾)
1716feqmptd 6249 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 = (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤)))
1817fveq2d 6195 . . . . . . . . . . . . 13 (𝑦𝐵 → (𝐷𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤))))
1910, 18syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝐷𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤))))
20 eqid 2622 . . . . . . . . . . . . . 14 (𝑁 × 𝑁) = (𝑁 × 𝑁)
21 mpteq12 4736 . . . . . . . . . . . . . . 15 (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤)) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 )))
2221fveq2d 6195 . . . . . . . . . . . . . 14 (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))))
2320, 22mpan 706 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))))
2423adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))))
25 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → (𝑎 ∈ (𝑁𝑚 𝑁) ↔ 𝑧 ∈ (𝑁𝑚 𝑁)))
2625anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ↔ (𝜑𝑧 ∈ (𝑁𝑚 𝑁))))
27 elequ2 2004 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑧 → (𝑤𝑎𝑤𝑧))
2827ifbid 4108 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑧 → if(𝑤𝑎, 1 , 0 ) = if(𝑤𝑧, 1 , 0 ))
2928mpteq2dv 4745 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 )) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 )))
3029fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 ))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))))
3130eqeq1d 2624 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → ((𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 ))) = 0 ↔ (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))) = 0 ))
3226, 31imbi12d 334 . . . . . . . . . . . . . . 15 (𝑎 = 𝑧 → (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 ))) = 0 ) ↔ ((𝜑𝑧 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))) = 0 )))
33 eleq1 2689 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ⟨𝑏, 𝑐⟩ → (𝑤𝑎 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑎))
3433ifbid 4108 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ⟨𝑏, 𝑐⟩ → if(𝑤𝑎, 1 , 0 ) = if(⟨𝑏, 𝑐⟩ ∈ 𝑎, 1 , 0 ))
3534mpt2mpt 6752 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 )) = (𝑏𝑁, 𝑐𝑁 ↦ if(⟨𝑏, 𝑐⟩ ∈ 𝑎, 1 , 0 ))
36 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (𝑁𝑚 𝑁) → 𝑎:𝑁𝑁)
3736adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → 𝑎:𝑁𝑁)
38 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎:𝑁𝑁𝑎 Fn 𝑁)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → 𝑎 Fn 𝑁)
40393ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ∧ 𝑏𝑁𝑐𝑁) → 𝑎 Fn 𝑁)
41 simp2 1062 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ∧ 𝑏𝑁𝑐𝑁) → 𝑏𝑁)
42 fnopfvb 6237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 Fn 𝑁𝑏𝑁) → ((𝑎𝑏) = 𝑐 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑎))
4340, 41, 42syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ∧ 𝑏𝑁𝑐𝑁) → ((𝑎𝑏) = 𝑐 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑎))
4443bicomd 213 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ∧ 𝑏𝑁𝑐𝑁) → (⟨𝑏, 𝑐⟩ ∈ 𝑎 ↔ (𝑎𝑏) = 𝑐))
4544ifbid 4108 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) ∧ 𝑏𝑁𝑐𝑁) → if(⟨𝑏, 𝑐⟩ ∈ 𝑎, 1 , 0 ) = if((𝑎𝑏) = 𝑐, 1 , 0 ))
4645mpt2eq3dva 6719 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝑏𝑁, 𝑐𝑁 ↦ if(⟨𝑏, 𝑐⟩ ∈ 𝑎, 1 , 0 )) = (𝑏𝑁, 𝑐𝑁 ↦ if((𝑎𝑏) = 𝑐, 1 , 0 )))
4735, 46syl5eq 2668 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 )) = (𝑏𝑁, 𝑐𝑁 ↦ if((𝑎𝑏) = 𝑐, 1 , 0 )))
4847fveq2d 6195 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 ))) = (𝐷‘(𝑏𝑁, 𝑐𝑁 ↦ if((𝑎𝑏) = 𝑐, 1 , 0 ))))
49 mdetuni.0g . . . . . . . . . . . . . . . . . 18 0 = (0g𝑅)
50 mdetuni.1r . . . . . . . . . . . . . . . . . 18 1 = (1r𝑅)
51 mdetuni.pg . . . . . . . . . . . . . . . . . 18 + = (+g𝑅)
52 mdetuni.tg . . . . . . . . . . . . . . . . . 18 · = (.r𝑅)
53 mdetuni.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
54 mdetuni.ff . . . . . . . . . . . . . . . . . 18 (𝜑𝐷:𝐵𝐾)
55 mdetuni.al . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
56 mdetuni.li . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
57 mdetuni.sc . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
58 mdetunilem9.id . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(1r𝐴)) = 0 )
5911, 13, 12, 49, 50, 51, 52, 6, 53, 54, 55, 56, 57, 58mdetunilem8 20425 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎:𝑁𝑁) → (𝐷‘(𝑏𝑁, 𝑐𝑁 ↦ if((𝑎𝑏) = 𝑐, 1 , 0 ))) = 0 )
6036, 59sylan2 491 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑏𝑁, 𝑐𝑁 ↦ if((𝑎𝑏) = 𝑐, 1 , 0 ))) = 0 )
6148, 60eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑎, 1 , 0 ))) = 0 )
6232, 61chvarv 2263 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑁𝑚 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))) = 0 )
6362adantrl 752 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))) = 0 )
6463adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤𝑧, 1 , 0 ))) = 0 )
6519, 24, 643eqtrd 2660 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )) → (𝐷𝑦) = 0 )
6665ex 450 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁))) → (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
6766ralrimivva 2971 . . . . . . . . 9 (𝜑 → ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
68 xpfi 8231 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
696, 6, 68syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
70 raleq 3138 . . . . . . . . . . . . 13 (𝑥 = (𝑁 × 𝑁) → (∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
7170imbi1d 331 . . . . . . . . . . . 12 (𝑥 = (𝑁 × 𝑁) → ((∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
72712ralbidv 2989 . . . . . . . . . . 11 (𝑥 = (𝑁 × 𝑁) → (∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
73 mdetunilem9.y . . . . . . . . . . 11 𝑌 = {𝑥 ∣ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )}
7472, 73elab2g 3353 . . . . . . . . . 10 ((𝑁 × 𝑁) ∈ Fin → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
7569, 74syl 17 . . . . . . . . 9 (𝜑 → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
7667, 75mpbird 247 . . . . . . . 8 (𝜑 → (𝑁 × 𝑁) ∈ 𝑌)
77 ssid 3624 . . . . . . . . 9 (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁)
78693ad2ant1 1082 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝑁 × 𝑁) ∈ Fin)
79 sseq1 3626 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (𝑎 ⊆ (𝑁 × 𝑁) ↔ ∅ ⊆ (𝑁 × 𝑁)))
80793anbi2d 1404 . . . . . . . . . . . . 13 (𝑎 = ∅ → ((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)))
81 eleq1 2689 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (𝑎𝑌 ↔ ∅ ∈ 𝑌))
8281notbid 308 . . . . . . . . . . . . 13 (𝑎 = ∅ → (¬ 𝑎𝑌 ↔ ¬ ∅ ∈ 𝑌))
8380, 82imbi12d 334 . . . . . . . . . . . 12 (𝑎 = ∅ → (((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎𝑌) ↔ ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈ 𝑌)))
84 sseq1 3626 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎 ⊆ (𝑁 × 𝑁) ↔ 𝑏 ⊆ (𝑁 × 𝑁)))
85843anbi2d 1404 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → ((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)))
86 eleq1 2689 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑎𝑌𝑏𝑌))
8786notbid 308 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (¬ 𝑎𝑌 ↔ ¬ 𝑏𝑌))
8885, 87imbi12d 334 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎𝑌) ↔ ((𝜑𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏𝑌)))
89 sseq1 3626 . . . . . . . . . . . . . 14 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)))
90893anbi2d 1404 . . . . . . . . . . . . 13 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)))
91 eleq1 2689 . . . . . . . . . . . . . 14 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝑌 ↔ (𝑏 ∪ {𝑐}) ∈ 𝑌))
9291notbid 308 . . . . . . . . . . . . 13 (𝑎 = (𝑏 ∪ {𝑐}) → (¬ 𝑎𝑌 ↔ ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))
9390, 92imbi12d 334 . . . . . . . . . . . 12 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎𝑌) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)))
94 sseq1 3626 . . . . . . . . . . . . . 14 (𝑎 = (𝑁 × 𝑁) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁)))
95943anbi2d 1404 . . . . . . . . . . . . 13 (𝑎 = (𝑁 × 𝑁) → ((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)))
96 eleq1 2689 . . . . . . . . . . . . . 14 (𝑎 = (𝑁 × 𝑁) → (𝑎𝑌 ↔ (𝑁 × 𝑁) ∈ 𝑌))
9796notbid 308 . . . . . . . . . . . . 13 (𝑎 = (𝑁 × 𝑁) → (¬ 𝑎𝑌 ↔ ¬ (𝑁 × 𝑁) ∈ 𝑌))
9895, 97imbi12d 334 . . . . . . . . . . . 12 (𝑎 = (𝑁 × 𝑁) → (((𝜑𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎𝑌) ↔ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌)))
99 simp3 1063 . . . . . . . . . . . 12 ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈ 𝑌)
100 ssun1 3776 . . . . . . . . . . . . . . . 16 𝑏 ⊆ (𝑏 ∪ {𝑐})
101 sstr2 3610 . . . . . . . . . . . . . . . 16 (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁)))
102100, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁))
1031023anim2i 1249 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝜑𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))
104103imim1i 63 . . . . . . . . . . . . 13 (((𝜑𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏𝑌))
105 simpl1 1064 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝜑)
106 simpl2 1065 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁))
107 simprll 802 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝑎𝐵)
10811, 12, 13matbas2i 20228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎𝐵𝑎 ∈ (𝐾𝑚 (𝑁 × 𝑁)))
109 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ (𝐾𝑚 (𝑁 × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾)
110108, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎𝐵𝑎:(𝑁 × 𝑁)⟶𝐾)
1111103ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑎:(𝑁 × 𝑁)⟶𝐾)
112111feqmptd 6249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑎 = (𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)))
113112reseq1d 5395 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎 ↾ ({(1st𝑐)} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ({(1st𝑐)} × 𝑁)))
114533ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑅 ∈ Ring)
115 ringgrp 18552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
116114, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑅 ∈ Grp)
117116adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → 𝑅 ∈ Grp)
118111adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾)
119 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁))
120119unssbd 3791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → {𝑐} ⊆ (𝑁 × 𝑁))
121 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑐 ∈ V
122121snss 4316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 ∈ (𝑁 × 𝑁) ↔ {𝑐} ⊆ (𝑁 × 𝑁))
123120, 122sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑐 ∈ (𝑁 × 𝑁))
124 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑐 ∈ (𝑁 × 𝑁) → (1st𝑐) ∈ 𝑁)
125123, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (1st𝑐) ∈ 𝑁)
126125snssd 4340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → {(1st𝑐)} ⊆ 𝑁)
127 xpss1 5228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ({(1st𝑐)} ⊆ 𝑁 → ({(1st𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁))
128126, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ({(1st𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁))
129128sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → 𝑒 ∈ (𝑁 × 𝑁))
130118, 129ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (𝑎𝑒) ∈ 𝐾)
13112, 50ringidcl 18568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑅 ∈ Ring → 1𝐾)
132114, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 1𝐾)
13312, 49ring0cl 18569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑅 ∈ Ring → 0𝐾)
134114, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 0𝐾)
135132, 134ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → if(𝑒𝑑, 1 , 0 ) ∈ 𝐾)
136135adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if(𝑒𝑑, 1 , 0 ) ∈ 𝐾)
137 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (-g𝑅) = (-g𝑅)
13812, 51, 137grpnpcan 17507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Grp ∧ (𝑎𝑒) ∈ 𝐾 ∧ if(𝑒𝑑, 1 , 0 ) ∈ 𝐾) → (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )) = (𝑎𝑒))
139117, 130, 136, 138syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )) = (𝑎𝑒))
140139eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (𝑎𝑒) = (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )))
141140adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎𝑒) = (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )))
142 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )))
143 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) = if(𝑒𝑑, 1 , 0 ))
144142, 143oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )))
145144adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = (((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) + if(𝑒𝑑, 1 , 0 )))
146141, 145eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎𝑒) = (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
14712, 51, 49grplid 17452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Grp ∧ (𝑎𝑒) ∈ 𝐾) → ( 0 + (𝑎𝑒)) = (𝑎𝑒))
148117, 130, 147syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → ( 0 + (𝑎𝑒)) = (𝑎𝑒))
149148eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (𝑎𝑒) = ( 0 + (𝑎𝑒)))
150149adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎𝑒) = ( 0 + (𝑎𝑒)))
151 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = 0 )
152 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) = (𝑎𝑒))
153151, 152oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = ( 0 + (𝑎𝑒)))
154153adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = ( 0 + (𝑎𝑒)))
155150, 154eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎𝑒) = (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
156146, 155pm2.61dan 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (𝑎𝑒) = (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
157156mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (𝑎𝑒)) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
158 snfi 8038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 {(1st𝑐)} ∈ Fin
15963ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑁 ∈ Fin)
160 xpfi 8231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (({(1st𝑐)} ∈ Fin ∧ 𝑁 ∈ Fin) → ({(1st𝑐)} × 𝑁) ∈ Fin)
161158, 159, 160sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ({(1st𝑐)} × 𝑁) ∈ Fin)
162 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) ∈ V
163 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0g𝑅) ∈ V
16449, 163eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 0 ∈ V
165162, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) ∈ V
166165a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) ∈ V)
167 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (1r𝑅) ∈ V
16850, 167eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 ∈ V
169168, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 if(𝑒𝑑, 1 , 0 ) ∈ V
170 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎𝑒) ∈ V
171169, 170ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) ∈ V
172171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) ∈ V)
173 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 ∈ ({(1st𝑐)} × 𝑁) → (1st𝑒) ∈ {(1st𝑐)})
174 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((1st𝑒) ∈ {(1st𝑐)} → (1st𝑒) = (1st𝑐))
175 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((1st𝑒) = (1st𝑐) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ))
176173, 174, 1753syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒 ∈ ({(1st𝑐)} × 𝑁) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ))
177176mpteq2ia 4740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ))
178177a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 )))
179 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
180161, 166, 172, 178, 179offval2 6914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
181157, 180eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (𝑎𝑒)) = ((𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
182128resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ({(1st𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (𝑎𝑒)))
183128resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))))
184128resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
185183, 184oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) = ((𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∘𝑓 + (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
186181, 182, 1853eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))))
187113, 186eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))))
188112reseq1d 5395 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
189 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) → (1st𝑒) ∈ (𝑁 ∖ {(1st𝑐)}))
190 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((1st𝑒) ∈ (𝑁 ∖ {(1st𝑐)}) → (1st𝑒) ≠ (1st𝑐))
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) → (1st𝑒) ≠ (1st𝑐))
192191neneqd 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) → ¬ (1st𝑒) = (1st𝑐))
193192adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) → ¬ (1st𝑒) = (1st𝑐))
194193iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = (𝑎𝑒))
195194mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ (𝑎𝑒)))
196 difss 3737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∖ {(1st𝑐)}) ⊆ 𝑁
197 xpss1 5228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∖ {(1st𝑐)}) ⊆ 𝑁 → ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁))
198196, 197ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁)
199 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))))
200198, 199mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))))
201 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ (𝑎𝑒)))
202198, 201mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ (𝑎𝑒)))
203195, 200, 2023eqtr4rd 2667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
204188, 203eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
205 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑒 = 𝑐 → (1st𝑒) = (1st𝑐))
206193, 205nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) → ¬ 𝑒 = 𝑐)
207206iffalsed 4097 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) = (𝑎𝑒))
208207mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ (𝑎𝑒)))
209 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
210198, 209mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))
211208, 210, 2023eqtr4rd 2667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎𝑒)) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
212188, 211eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
213135adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒𝑑, 1 , 0 ) ∈ 𝐾)
214111ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → (𝑎𝑒) ∈ 𝐾)
215213, 214ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) ∈ 𝐾)
216 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))
217215, 216fmptd 6385 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾)
218 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Base‘𝑅) ∈ V
21912, 218eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝐾 ∈ V
22068anidms 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
221159, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑁 × 𝑁) ∈ Fin)
222 elmapg 7870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
223219, 221, 222sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
224217, 223mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)))
22511, 12matbas2 20227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
226159, 114, 225syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝐾𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
227226, 13syl6eqr 2674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝐾𝑚 (𝑁 × 𝑁)) = 𝐵)
228224, 227eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵)
229 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑎𝐵)
230116adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 𝑅 ∈ Grp)
23112, 137grpsubcl 17495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Grp ∧ (𝑎𝑒) ∈ 𝐾 ∧ if(𝑒𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) ∈ 𝐾)
232230, 214, 213, 231syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) ∈ 𝐾)
233134adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 0𝐾)
234232, 233ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) ∈ 𝐾)
235234, 214ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) ∈ 𝐾)
236 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))
237235, 236fmptd 6385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾)
238 elmapg 7870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
239219, 221, 238sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
240237, 239mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)))
241240, 227eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ 𝐵)
242563ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
243 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝑎 → (𝑥 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({𝑤} × 𝑁)))
244243eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝑎 → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁)))))
245 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝑎 → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
246245eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
247245eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
248244, 246, 2473anbi123d 1399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝑎 → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
249 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝑎 → (𝐷𝑥) = (𝐷𝑎))
250249eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝑎 → ((𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧)) ↔ (𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧))))
251248, 250imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑎 → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧)))))
2522512ralbidv 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑎 → (∀𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧)))))
253 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝑦 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))
254253oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))))
255254eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁)))))
256 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
257256eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
258255, 2573anbi12d 1400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
259 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝐷𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))))
260259oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝐷𝑦) + (𝐷𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)))
261260eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧)) ↔ (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧))))
262258, 261imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)))))
2632622ralbidv 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷𝑦) + (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)))))
264252, 263rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎𝐵 ∧ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧)))) → ∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧))))
265229, 241, 242, 264syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧))))
266 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))
267266oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))))
268267eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))))
269 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
270269eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
271268, 2703anbi13d 1401 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
272 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (𝐷𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
273272oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))
274273eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)) ↔ (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))))
275271, 274imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))))
276 sneq 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = (1st𝑐) → {𝑤} = {(1st𝑐)})
277276xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ({𝑤} × 𝑁) = ({(1st𝑐)} × 𝑁))
278277reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → (𝑎 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({(1st𝑐)} × 𝑁)))
279277reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)))
280277reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)))
281279, 280oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))))
282278, 281eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (1st𝑐) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)))))
283276difeq2d 3728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = (1st𝑐) → (𝑁 ∖ {𝑤}) = (𝑁 ∖ {(1st𝑐)}))
284283xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ((𝑁 ∖ {𝑤}) × 𝑁) = ((𝑁 ∖ {(1st𝑐)}) × 𝑁))
285284reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
286284reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
287285, 286eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (1st𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))))
288284reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
289285, 288eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (1st𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))))
290282, 287, 2893anbi123d 1399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = (1st𝑐) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))))
291290imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = (1st𝑐) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))) ↔ (((𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))))
292275, 291rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵 ∧ (1st𝑐) ∈ 𝑁) ∧ ∀𝑧𝐵𝑤𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷𝑧)))) → (((𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))))
293228, 125, 265, 292syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (((𝑎 ↾ ({(1st𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) ∘𝑓 + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))))
294187, 204, 212, 293mp3and 1427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))
295105, 106, 107, 294syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝐷𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))
296 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑒 = 𝑐 → (𝑎𝑒) = (𝑎𝑐))
297 elequ1 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑒 = 𝑐 → (𝑒𝑑𝑐𝑑))
298297ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑒 = 𝑐 → if(𝑒𝑑, 1 , 0 ) = if(𝑐𝑑, 1 , 0 ))
299296, 298oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑒 = 𝑐 → ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
300299adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
301111, 123ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑎𝑐) ∈ 𝐾)
302132, 134ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → if(𝑐𝑑, 1 , 0 ) ∈ 𝐾)
30312, 137grpsubcl 17495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑅 ∈ Grp ∧ (𝑎𝑐) ∈ 𝐾 ∧ if(𝑐𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ 𝐾)
304116, 301, 302, 303syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ 𝐾)
30512, 52, 50ringridm 18572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ) = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
306114, 304, 305syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ) = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
307306ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ) = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
308300, 307eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ))
309142adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )))
310 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 1 )
311310oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒 = 𝑐 → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ))
312311adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 1 ))
313308, 309, 3123eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )))
31412, 52, 49ringrz 18588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) = 0 )
315114, 304, 314syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) = 0 )
316315eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 0 = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ))
317316ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → 0 = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ))
318151adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = 0 )
319 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 0 )
320319oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑒 = 𝑐 → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ))
321320adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ))
322317, 318, 3213eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )))
323313, 322pm2.61dan 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )))
324173adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (1st𝑒) ∈ {(1st𝑐)})
325324, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (1st𝑒) = (1st𝑐))
326325iftrued 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ))
327325iftrued 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) = if(𝑒 = 𝑐, 1 , 0 ))
328327oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )))
329323, 326, 3283eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))
330329mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))
331 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ V)
332168, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 if(𝑒 = 𝑐, 1 , 0 ) ∈ V
333332, 170ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) ∈ V
334333a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ({(1st𝑐)} × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) ∈ V)
335 fconstmpt 5163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )))
336335a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))))
337128resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))
338161, 331, 334, 336, 337offval2 6914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) = (𝑒 ∈ ({(1st𝑐)} × 𝑁) ↦ (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))
339330, 183, 3383eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))))
340 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (1st𝑒) = (1st𝑐) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = (𝑎𝑒))
341 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (1st𝑒) = (1st𝑐) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) = (𝑎𝑒))
342340, 341eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (1st𝑒) = (1st𝑐) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))
343193, 342syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)) = if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))
344343mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))
345 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∖ {(1st𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))
346198, 345mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st𝑐)}) × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))
347344, 200, 3463eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
348132, 134ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾)
349348adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾)
350349, 214ifcld 4131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) ∈ 𝐾)
351 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))
352350, 351fmptd 6385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾)
353 elmapg 7870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
354219, 221, 353sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))):(𝑁 × 𝑁)⟶𝐾))
355352, 354mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ (𝐾𝑚 (𝑁 × 𝑁)))
356355, 227eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵)
357573ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
358 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))
359358eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁)))))
360 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
361360eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
362359, 361anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
363 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (𝐷𝑥) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))))
364363eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((𝐷𝑥) = (𝑦 · (𝐷𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧))))
365362, 364imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧)))))
3663652ralbidv 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) → (∀𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧)))))
367 sneq 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → {𝑦} = {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))})
368367xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → (({𝑤} × 𝑁) × {𝑦}) = (({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}))
369368oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))))
370369eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁)))))
371370anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
372 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → (𝑦 · (𝐷𝑧)) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)))
373372eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧))))
374371, 373imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)))))
3753742ralbidv 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) → (∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (𝑦 · (𝐷𝑧))) ↔ ∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)))))
376366, 375rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ∈ 𝐵 ∧ ((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) ∈ 𝐾) ∧ ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧)))) → ∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧))))
377241, 304, 357, 376syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧))))
378 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))
379378oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))))
380379eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)))))
381 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))
382381eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))
383380, 382anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))))
384 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (𝐷𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))
385384oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))))
386385eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))))
387383, 386imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))))))
388277xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = (1st𝑐) → (({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) = (({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}))
389277reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)))
390388, 389oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))))
391279, 390eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)))))
392284reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = (1st𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))
393286, 392eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = (1st𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))))
394391, 393anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = (1st𝑐) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)))))
395394imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = (1st𝑐) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))))))
396387, 395rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵 ∧ (1st𝑐) ∈ 𝑁) ∧ ∀𝑧𝐵𝑤𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷𝑧)))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))))
397356, 125, 377, 396syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁)) = ((({(1st𝑐)} × 𝑁) × {((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 ))}) ∘𝑓 · ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ({(1st𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ↾ ((𝑁 ∖ {(1st𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))))
398339, 347, 397mp2and 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))))
399398oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))) = ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))
400105, 106, 107, 399syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, ((𝑎𝑒)(-g𝑅)if(𝑒𝑑, 1 , 0 )), 0 ), (𝑎𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))) = ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))))
401 simpl3 1066 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌)
402 simprlr 803 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁𝑚 𝑁))
403 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))
404 ralss 3668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ⊆ (𝑏 ∪ {𝑐}) → (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))))
405100, 404ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )))
406 iftrue 4092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((1st𝑤) = (1st𝑐) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 = 𝑐, 1 , 0 ))
407406adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 = 𝑐, 1 , 0 ))
408 ibar 525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((1st𝑤) = (1st𝑐) → ((2nd𝑤) = (2nd𝑐) ↔ ((1st𝑤) = (1st𝑐) ∧ (2nd𝑤) = (2nd𝑐))))
409408adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → ((2nd𝑤) = (2nd𝑐) ↔ ((1st𝑤) = (1st𝑐) ∧ (2nd𝑤) = (2nd𝑐))))
410 relxp 5227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Rel (𝑁 × 𝑁)
411 simpl2 1065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁))
412411sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → 𝑤 ∈ (𝑁 × 𝑁))
413412adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → 𝑤 ∈ (𝑁 × 𝑁))
414 1st2nd 7214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((Rel (𝑁 × 𝑁) ∧ 𝑤 ∈ (𝑁 × 𝑁)) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
415410, 413, 414sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
416415eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
417 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → 𝑑 ∈ (𝑁𝑚 𝑁))
418 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑑 ∈ (𝑁𝑚 𝑁) → 𝑑:𝑁𝑁)
419418adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → 𝑑:𝑁𝑁)
420125adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (1st𝑐) ∈ 𝑁)
421 xp2nd 7199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑐 ∈ (𝑁 × 𝑁) → (2nd𝑐) ∈ 𝑁)
422123, 421syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → (2nd𝑐) ∈ 𝑁)
423422adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (2nd𝑐) ∈ 𝑁)
424 fsets 15891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑑 ∈ (𝑁𝑚 𝑁) ∧ 𝑑:𝑁𝑁) ∧ (1st𝑐) ∈ 𝑁 ∧ (2nd𝑐) ∈ 𝑁) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁)
425417, 419, 420, 423, 424syl211anc 1332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁)
426 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁 → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) Fn 𝑁)
427425, 426syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) Fn 𝑁)
428427ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) Fn 𝑁)
429 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑤 ∈ (𝑁 × 𝑁) → (1st𝑤) ∈ 𝑁)
430412, 429syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (1st𝑤) ∈ 𝑁)
431430adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (1st𝑤) ∈ 𝑁)
432 fnopfvb 6237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) Fn 𝑁 ∧ (1st𝑤) ∈ 𝑁) → (((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = (2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
433428, 431, 432syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = (2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
434 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((1st𝑤) = (1st𝑐) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑐)))
435434adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑐)))
436 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 𝑑 ∈ V
437 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (1st𝑐) ∈ V
438 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2nd𝑐) ∈ V
439 fvsetsid 15890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑑 ∈ V ∧ (1st𝑐) ∈ V ∧ (2nd𝑐) ∈ V) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑐)) = (2nd𝑐))
440436, 437, 438, 439mp3an 1424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑐)) = (2nd𝑐)
441435, 440syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = (2nd𝑐))
442441eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = (2nd𝑤) ↔ (2nd𝑐) = (2nd𝑤)))
443 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((2nd𝑐) = (2nd𝑤) ↔ (2nd𝑤) = (2nd𝑐))
444442, 443syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)‘(1st𝑤)) = (2nd𝑤) ↔ (2nd𝑤) = (2nd𝑐)))
445416, 433, 4443bitr2rd 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → ((2nd𝑤) = (2nd𝑐) ↔ 𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
446123ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → 𝑐 ∈ (𝑁 × 𝑁))
447 xpopth 7207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑤 ∈ (𝑁 × 𝑁) ∧ 𝑐 ∈ (𝑁 × 𝑁)) → (((1st𝑤) = (1st𝑐) ∧ (2nd𝑤) = (2nd𝑐)) ↔ 𝑤 = 𝑐))
448413, 446, 447syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (((1st𝑤) = (1st𝑐) ∧ (2nd𝑤) = (2nd𝑐)) ↔ 𝑤 = 𝑐))
449409, 445, 4483bitr3rd 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → (𝑤 = 𝑐𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
450449ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → if(𝑤 = 𝑐, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
451407, 450eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
452451a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st𝑤) = (1st𝑐)) → ((𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
453 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑤 ∈ {𝑐} → 𝑤 = 𝑐)
454453fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑤 ∈ {𝑐} → (1st𝑤) = (1st𝑐))
455454con3i 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (¬ (1st𝑤) = (1st𝑐) → ¬ 𝑤 ∈ {𝑐})
456455adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st𝑤) = (1st𝑐)) → ¬ 𝑤 ∈ {𝑐})
457 elun 3753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑤 ∈ (𝑏 ∪ {𝑐}) ↔ (𝑤𝑏𝑤 ∈ {𝑐}))
458457biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑤 ∈ (𝑏 ∪ {𝑐}) → (𝑤𝑏𝑤 ∈ {𝑐}))
459458adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st𝑤) = (1st𝑐)) → (𝑤𝑏𝑤 ∈ {𝑐}))
460 orel2 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 𝑤 ∈ {𝑐} → ((𝑤𝑏𝑤 ∈ {𝑐}) → 𝑤𝑏))
461456, 459, 460sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st𝑤) = (1st𝑐)) → 𝑤𝑏)
462461adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → 𝑤𝑏)
463 iffalse 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (¬ (1st𝑤) = (1st𝑐) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤𝑑, 1 , 0 )) = if(𝑤𝑑, 1 , 0 ))
464463adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤𝑑, 1 , 0 )) = if(𝑤𝑑, 1 , 0 ))
465 setsres 15901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 ∈ V → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) = (𝑑 ↾ (V ∖ {(1st𝑐)})))
466465eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑑 ∈ V → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)}))))
467436, 466mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)}))))
468 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (1st𝑤) ∈ V
469468a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (¬ (1st𝑤) = (1st𝑐) → (1st𝑤) ∈ V)
470 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((1st𝑤) ≠ (1st𝑐) ↔ ¬ (1st𝑤) = (1st𝑐))
471470biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (¬ (1st𝑤) = (1st𝑐) → (1st𝑤) ≠ (1st𝑐))
472 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((1st𝑤) ∈ (V ∖ {(1st𝑐)}) ↔ ((1st𝑤) ∈ V ∧ (1st𝑤) ≠ (1st𝑐)))
473469, 471, 472sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (¬ (1st𝑤) = (1st𝑐) → (1st𝑤) ∈ (V ∖ {(1st𝑐)}))
474 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2nd𝑤) ∈ V
475474opres 5406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((1st𝑤) ∈ (V ∖ {(1st𝑐)}) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
476475adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
477 1st2nd2 7205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑤 ∈ (𝑁 × 𝑁) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
478477eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑤 ∈ (𝑁 × 𝑁) → (𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
479478adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
480476, 479bitr4d 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
481412, 473, 480syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ↾ (V ∖ {(1st𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
482474opres 5406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((1st𝑤) ∈ (V ∖ {(1st𝑐)}) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑑))
483482adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)})) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑑))
484477eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑤 ∈ (𝑁 × 𝑁) → (𝑤𝑑 ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑑))
485484adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (𝑤𝑑 ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ 𝑑))
486483, 485bitr4d 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st𝑤) ∈ (V ∖ {(1st𝑐)})) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)})) ↔ 𝑤𝑑))
487412, 473, 486syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → (⟨(1st𝑤), (2nd𝑤)⟩ ∈ (𝑑 ↾ (V ∖ {(1st𝑐)})) ↔ 𝑤𝑑))
488467, 481, 4873bitr3rd 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → (𝑤𝑑𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
489488ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → if(𝑤𝑑, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
490464, 489eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
491 ifeq2 4091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤𝑑, 1 , 0 )))
492491eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → (if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) ↔ if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
493490, 492syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
494462, 493embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st𝑤) = (1st𝑐)) → ((𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
495452, 494pm2.61dan 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
496 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑒 = 𝑤 → (1st𝑒) = (1st𝑤))
497496eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑒 = 𝑤 → ((1st𝑒) = (1st𝑐) ↔ (1st𝑤) = (1st𝑐)))
498 equequ1 1952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑒 = 𝑤 → (𝑒 = 𝑐𝑤 = 𝑐))
499498ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑒 = 𝑤 → if(𝑒 = 𝑐, 1 , 0 ) = if(𝑤 = 𝑐, 1 , 0 ))
500 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑒 = 𝑤 → (𝑎𝑒) = (𝑎𝑤))
501497, 499, 500ifbieq12d 4113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑒 = 𝑤 → if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)) = if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)))
502168, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 if(𝑤 = 𝑐, 1 , 0 ) ∈ V
503 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑎𝑤) ∈ V
504502, 503ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) ∈ V
505501, 351, 504fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)))
506505eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑤 ∈ (𝑁 × 𝑁) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) ↔ if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
507412, 506syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) ↔ if((1st𝑤) = (1st𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎𝑤)) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
508495, 507sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
509508ralimdva 2962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤𝑏 → (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
510405, 509syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ 𝑑 ∈ (𝑁𝑚 𝑁)) → (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
511510impr 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ (𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
5125113adantr1 1220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
513356adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵)
514 simpr2 1068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁𝑚 𝑁))
515514, 418syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝑑:𝑁𝑁)
516125adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (1st𝑐) ∈ 𝑁)
517422adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (2nd𝑐) ∈ 𝑁)
518514, 515, 516, 517, 424syl211anc 1332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁)
519159, 159elmapd 7871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ∈ (𝑁𝑚 𝑁) ↔ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁))
520519adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ∈ (𝑁𝑚 𝑁) ↔ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩):𝑁𝑁))
521518, 520mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ∈ (𝑁𝑚 𝑁))
522 simpr1 1067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌)
523 raleq 3138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
524523imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑏 ∪ {𝑐}) → ((∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
5255242ralbidv 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
526525, 73elab2g 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ((𝑏 ∪ {𝑐}) ∈ 𝑌 ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
527526ibi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
528522, 527syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
529 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (𝑦𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤))
530529eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 )))
531530ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 )))
532 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → (𝐷𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))))
533532eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((𝐷𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 ))
534531, 533imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 )))
535 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) → (𝑤𝑧𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩)))
536535ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) → if(𝑤𝑧, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ))
537536eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
538537ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 )))
539538imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 )))
540534, 539rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵 ∧ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩) ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 ))
541513, 521, 528, 540syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet ⟨(1st𝑐), (2nd𝑐)⟩), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 ))
542512, 541mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒)))) = 0 )
543542oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) = (((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ))
544119unssad 3790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → 𝑏 ⊆ (𝑁 × 𝑁))
545544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → 𝑏 ⊆ (𝑁 × 𝑁))
546 simpr3 1069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))
547 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) → 𝑤 ∈ (𝑁 × 𝑁))
548547adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) ∧ (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → 𝑤 ∈ (𝑁 × 𝑁))
549 elequ1 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑒 = 𝑤 → (𝑒𝑑𝑤𝑑))
550549ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑒 = 𝑤 → if(𝑒𝑑, 1 , 0 ) = if(𝑤𝑑, 1 , 0 ))
551498, 550, 500ifbieq12d 4113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑒 = 𝑤 → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) = if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)))
552168, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 if(𝑤𝑑, 1 , 0 ) ∈ V
553552, 503ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)) ∈ V
554551, 216, 553fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)))
555548, 554syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) ∧ (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)))
556 ifeq2 4091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)) = if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), if(𝑤𝑑, 1 , 0 )))
557556adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) ∧ (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)) = if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), if(𝑤𝑑, 1 , 0 )))
558 ifid 4125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), if(𝑤𝑑, 1 , 0 )) = if(𝑤𝑑, 1 , 0 )
559557, 558syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) ∧ (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤𝑑, 1 , 0 ), (𝑎𝑤)) = if(𝑤𝑑, 1 , 0 ))
560555, 559eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) ∧ (𝑎𝑤) = if(𝑤𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ))
561560ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤𝑏) → ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 )))
562561ralimdva 2962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ⊆ (𝑁 × 𝑁) → (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → ∀𝑤𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 )))
563545, 546, 562sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ))
564143, 298eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)) = if(𝑐𝑑, 1 , 0 ))
565168, 164ifex 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 if(𝑐𝑑, 1 , 0 ) ∈ V
566564, 216, 565fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 ))
567123, 566syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 ))
568567adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 ))
569 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑐 → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐))
570 elequ1 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = 𝑐 → (𝑤𝑑𝑐𝑑))
571570ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤 = 𝑐 → if(𝑤𝑑, 1 , 0 ) = if(𝑐𝑑, 1 , 0 ))
572569, 571eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑐 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 )))
573572ralunsn 4422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ V → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ (∀𝑤𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 ))))
574121, 573ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ (∀𝑤𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑐) = if(𝑐𝑑, 1 , 0 )))
575563, 568, 574sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ))
576228adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵)
577 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (𝑦𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤))
578577eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 )))
579578ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 )))
580 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → (𝐷𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))))
581580eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((𝐷𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 ))
582579, 581imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 )))
583 elequ2 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑑 → (𝑤𝑧𝑤𝑑))
584583ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑑 → if(𝑤𝑧, 1 , 0 ) = if(𝑤𝑑, 1 , 0 ))
585584eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑑 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 )))
586585ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑑 → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 )))
587586imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑑 → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 )))
588582, 587rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))) ∈ 𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 ))
589576, 514, 528, 588syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))‘𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 ))
590575, 589mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒)))) = 0 )
591543, 590oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))) = ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) + 0 ))
592315oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) + 0 ) = ( 0 + 0 ))
59312, 51, 49grplid 17452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Grp ∧ 0𝐾) → ( 0 + 0 ) = 0 )
594116, 134, 593syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ( 0 + 0 ) = 0 )
595592, 594eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 )
596595adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 )
597591, 596eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑑 ∈ (𝑁𝑚 𝑁) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))) = 0 )
598105, 106, 107, 401, 402, 403, 597syl33anc 1341 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → ((((𝑎𝑐)(-g𝑅)if(𝑐𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st𝑒) = (1st𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒𝑑, 1 , 0 ), (𝑎𝑒))))) = 0 )
599295, 400, 5983eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ))) → (𝐷𝑎) = 0 )
600599expr 643 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ (𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁))) → (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑎) = 0 ))
601600ralrimivva 2971 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑎) = 0 ))
602 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑦 → (𝑎𝑤) = (𝑦𝑤))
603602eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → ((𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ (𝑦𝑤) = if(𝑤𝑑, 1 , 0 )))
604603ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → (∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ ∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑑, 1 , 0 )))
605 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑦 → (𝐷𝑎) = (𝐷𝑦))
606605eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝐷𝑎) = 0 ↔ (𝐷𝑦) = 0 ))
607604, 606imbi12d 334 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → ((∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑎) = 0 ) ↔ (∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑦) = 0 )))
608 elequ2 2004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑧 → (𝑤𝑑𝑤𝑧))
609608ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 → if(𝑤𝑑, 1 , 0 ) = if(𝑤𝑧, 1 , 0 ))
610609eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 → ((𝑦𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
611610ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 → (∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑑, 1 , 0 ) ↔ ∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
612611imbi1d 331 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑧 → ((∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
613607, 612cbvral2v 3179 . . . . . . . . . . . . . . . . . . . 20 (∀𝑎𝐵𝑑 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑎𝑤) = if(𝑤𝑑, 1 , 0 ) → (𝐷𝑎) = 0 ) ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
614601, 613sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
615 vex 3203 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ V
616 raleq 3138 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
617616imbi1d 331 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
6186172ralbidv 2989 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → (∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
619615, 618, 73elab2 3354 . . . . . . . . . . . . . . . . . . 19 (𝑏𝑌 ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑏 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
620614, 619sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → 𝑏𝑌)
6216203expia 1267 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → ((𝑏 ∪ {𝑐}) ∈ 𝑌𝑏𝑌))
622621con3d 148 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → (¬ 𝑏𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))
6236223adant3 1081 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))
624623a1i 11 . . . . . . . . . . . . . 14 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)))
625624a2d 29 . . . . . . . . . . . . 13 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)))
626104, 625syl5 34 . . . . . . . . . . . 12 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (((𝜑𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)))
62783, 88, 93, 98, 99, 626findcard2s 8201 . . . . . . . . . . 11 ((𝑁 × 𝑁) ∈ Fin → ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌))
62878, 627mpcom 38 . . . . . . . . . 10 ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌)
6296283exp 1264 . . . . . . . . 9 (𝜑 → ((𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) → (¬ ∅ ∈ 𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌)))
63077, 629mpi 20 . . . . . . . 8 (𝜑 → (¬ ∅ ∈ 𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌))
63176, 630mt4d 152 . . . . . . 7 (𝜑 → ∅ ∈ 𝑌)
632631adantr 481 . . . . . 6 ((𝜑𝑎𝐵) → ∅ ∈ 𝑌)
633 0ex 4790 . . . . . . 7 ∅ ∈ V
634 raleq 3138 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 )))
635634imbi1d 331 . . . . . . . 8 (𝑥 = ∅ → ((∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
6366352ralbidv 2989 . . . . . . 7 (𝑥 = ∅ → (∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤𝑥 (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )))
637633, 636, 73elab2 3354 . . . . . 6 (∅ ∈ 𝑌 ↔ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
638632, 637sylib 208 . . . . 5 ((𝜑𝑎𝐵) → ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ))
639 fveq1 6190 . . . . . . . . 9 (𝑦 = 𝑎 → (𝑦𝑤) = (𝑎𝑤))
640639eqeq1d 2624 . . . . . . . 8 (𝑦 = 𝑎 → ((𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ (𝑎𝑤) = if(𝑤𝑧, 1 , 0 )))
641640ralbidv 2986 . . . . . . 7 (𝑦 = 𝑎 → (∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤𝑧, 1 , 0 )))
642 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑎 → (𝐷𝑦) = (𝐷𝑎))
643642eqeq1d 2624 . . . . . . 7 (𝑦 = 𝑎 → ((𝐷𝑦) = 0 ↔ (𝐷𝑎) = 0 ))
644641, 643imbi12d 334 . . . . . 6 (𝑦 = 𝑎 → ((∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑎) = 0 )))
645 eleq2 2690 . . . . . . . . . 10 (𝑧 = ( I ↾ 𝑁) → (𝑤𝑧𝑤 ∈ ( I ↾ 𝑁)))
646645ifbid 4108 . . . . . . . . 9 (𝑧 = ( I ↾ 𝑁) → if(𝑤𝑧, 1 , 0 ) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ))
647646eqeq2d 2632 . . . . . . . 8 (𝑧 = ( I ↾ 𝑁) → ((𝑎𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 )))
648647ralbidv 2986 . . . . . . 7 (𝑧 = ( I ↾ 𝑁) → (∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 )))
649648imbi1d 331 . . . . . 6 (𝑧 = ( I ↾ 𝑁) → ((∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑎) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷𝑎) = 0 )))
650644, 649rspc2va 3323 . . . . 5 (((𝑎𝐵 ∧ ( I ↾ 𝑁) ∈ (𝑁𝑚 𝑁)) ∧ ∀𝑦𝐵𝑧 ∈ (𝑁𝑚 𝑁)(∀𝑤 ∈ ∅ (𝑦𝑤) = if(𝑤𝑧, 1 , 0 ) → (𝐷𝑦) = 0 )) → (∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷𝑎) = 0 ))
6512, 9, 638, 650syl21anc 1325 . . . 4 ((𝜑𝑎𝐵) → (∀𝑤 ∈ ∅ (𝑎𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷𝑎) = 0 ))
6521, 651mpi 20 . . 3 ((𝜑𝑎𝐵) → (𝐷𝑎) = 0 )
653652mpteq2dva 4744 . 2 (𝜑 → (𝑎𝐵 ↦ (𝐷𝑎)) = (𝑎𝐵0 ))
65454feqmptd 6249 . 2 (𝜑𝐷 = (𝑎𝐵 ↦ (𝐷𝑎)))
655 fconstmpt 5163 . . 3 (𝐵 × { 0 }) = (𝑎𝐵0 )
656655a1i 11 . 2 (𝜑 → (𝐵 × { 0 }) = (𝑎𝐵0 ))
657653, 654, 6563eqtr4d 2666 1 (𝜑𝐷 = (𝐵 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  {csn 4177  cop 4183  cmpt 4729   I cid 5023   × cxp 5112  cres 5116  Rel wrel 5119   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Fincfn 7955   sSet csts 15855  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  1rcur 18501  Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-evpm 17912  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214
This theorem is referenced by:  mdetuni0  20427
  Copyright terms: Public domain W3C validator