| Step | Hyp | Ref
| Expression |
| 1 | | cmptop 21198 |
. . . 4
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
| 2 | | flimfnfcls.x |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
| 3 | 2 | fclsval 21812 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅)) |
| 4 | | eqid 2622 |
. . . . . 6
⊢ 𝑋 = 𝑋 |
| 5 | 4 | iftruei 4093 |
. . . . 5
⊢ if(𝑋 = 𝑋, ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥), ∅) = ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) |
| 6 | 3, 5 | syl6eq 2672 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) |
| 7 | 1, 6 | sylan 488 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩
𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥)) |
| 8 | | fvex 6201 |
. . . 4
⊢
((cls‘𝐽)‘𝑥) ∈ V |
| 9 | 8 | dfiin3 5381 |
. . 3
⊢ ∩ 𝑥 ∈ 𝐹 ((cls‘𝐽)‘𝑥) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) |
| 10 | 7, 9 | syl6eq 2672 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) |
| 11 | | simpl 473 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Comp) |
| 13 | 12, 1 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐽 ∈ Top) |
| 14 | | filelss 21656 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
| 15 | 14 | adantll 750 |
. . . . . 6
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) |
| 16 | 2 | clscld 20851 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
| 17 | 13, 15, 16 | syl2anc 693 |
. . . . 5
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽)) |
| 18 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) = (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) |
| 19 | 17, 18 | fmptd 6385 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽)) |
| 20 | | frn 6053 |
. . . 4
⊢ ((𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽)) |
| 21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽)) |
| 22 | | simpr 477 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
| 24 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) |
| 25 | 2 | clsss3 20863 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) |
| 26 | 13, 15, 25 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋) |
| 27 | 2 | sscls 20860 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
| 28 | 13, 15, 27 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥)) |
| 29 | | filss 21657 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋 ∧ 𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) |
| 30 | 23, 24, 26, 28, 29 | syl13anc 1328 |
. . . . . . . 8
⊢ (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹) |
| 31 | 30, 18 | fmptd 6385 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶𝐹) |
| 32 | | frn 6053 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶𝐹 → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) |
| 33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) |
| 34 | | fiss 8330 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) |
| 35 | 22, 33, 34 | syl2anc 693 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹)) |
| 36 | | filfi 21663 |
. . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
| 37 | 22, 36 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹) |
| 38 | 35, 37 | sseqtrd 3641 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹) |
| 39 | | 0nelfil 21653 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) |
| 40 | 22, 39 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
𝐹) |
| 41 | 38, 40 | ssneldd 3606 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈
(fi‘ran (𝑥 ∈
𝐹 ↦ ((cls‘𝐽)‘𝑥)))) |
| 42 | | cmpfii 21212 |
. . 3
⊢ ((𝐽 ∈ Comp ∧ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ∩ ran
(𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) |
| 43 | 11, 21, 41, 42 | syl3anc 1326 |
. 2
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ∩ ran (𝑥 ∈ 𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅) |
| 44 | 10, 43 | eqnetrd 2861 |
1
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅) |