![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpuptf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
Ref | Expression |
---|---|
frgpuptf | ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.a | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | 1 | ffvelrnda 6359 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ 𝐵) |
3 | 2 | adantrr 753 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → (𝐹‘𝑦) ∈ 𝐵) |
4 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → 𝐻 ∈ Grp) |
6 | frgpup.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐻) | |
7 | frgpup.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝐻) | |
8 | 6, 7 | grpinvcl 17467 | . . . . 5 ⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑦) ∈ 𝐵) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
9 | 5, 3, 8 | syl2anc 693 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → (𝑁‘(𝐹‘𝑦)) ∈ 𝐵) |
10 | 3, 9 | ifcld 4131 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 2𝑜)) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
11 | 10 | ralrimivva 2971 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵) |
12 | frgpup.t | . . 3 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | 12 | fmpt2 7237 | . 2 ⊢ (∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 2𝑜 if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) ∈ 𝐵 ↔ 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
14 | 11, 13 | sylib 208 | 1 ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∅c0 3915 ifcif 4086 × cxp 5112 ⟶wf 5884 ‘cfv 5888 ↦ cmpt2 6652 2𝑜c2o 7554 Basecbs 15857 Grpcgrp 17422 invgcminusg 17423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 |
This theorem is referenced by: frgpuplem 18185 frgpupf 18186 frgpup1 18188 frgpup2 18189 frgpup3lem 18190 |
Copyright terms: Public domain | W3C validator |