MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptf Structured version   Visualization version   Unicode version

Theorem frgpuptf 18183
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
Assertion
Ref Expression
frgpuptf  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
Distinct variable groups:    y, z, F    y, N, z    y, B, z    ph, y, z   
y, I, z
Allowed substitution hints:    T( y, z)    H( y, z)    V( y, z)

Proof of Theorem frgpuptf
StepHypRef Expression
1 frgpup.a . . . . . 6  |-  ( ph  ->  F : I --> B )
21ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  B )
32adantrr 753 . . . 4  |-  ( (
ph  /\  ( y  e.  I  /\  z  e.  2o ) )  -> 
( F `  y
)  e.  B )
4 frgpup.h . . . . . 6  |-  ( ph  ->  H  e.  Grp )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( y  e.  I  /\  z  e.  2o ) )  ->  H  e.  Grp )
6 frgpup.b . . . . . 6  |-  B  =  ( Base `  H
)
7 frgpup.n . . . . . 6  |-  N  =  ( invg `  H )
86, 7grpinvcl 17467 . . . . 5  |-  ( ( H  e.  Grp  /\  ( F `  y )  e.  B )  -> 
( N `  ( F `  y )
)  e.  B )
95, 3, 8syl2anc 693 . . . 4  |-  ( (
ph  /\  ( y  e.  I  /\  z  e.  2o ) )  -> 
( N `  ( F `  y )
)  e.  B )
103, 9ifcld 4131 . . 3  |-  ( (
ph  /\  ( y  e.  I  /\  z  e.  2o ) )  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  e.  B )
1110ralrimivva 2971 . 2  |-  ( ph  ->  A. y  e.  I  A. z  e.  2o  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  e.  B )
12 frgpup.t . . 3  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
1312fmpt2 7237 . 2  |-  ( A. y  e.  I  A. z  e.  2o  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  e.  B  <->  T :
( I  X.  2o )
--> B )
1411, 13sylib 208 1  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915   ifcif 4086    X. cxp 5112   -->wf 5884   ` cfv 5888    |-> cmpt2 6652   2oc2o 7554   Basecbs 15857   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  frgpuplem  18185  frgpupf  18186  frgpup1  18188  frgpup2  18189  frgpup3lem  18190
  Copyright terms: Public domain W3C validator