![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | frgpup.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
3 | grpmnd 17429 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → 𝐻 ∈ Mnd) |
6 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
7 | fviss 6256 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜) | |
8 | 6, 7 | eqsstri 3635 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2𝑜) |
9 | 8 | sseli 3599 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2𝑜)) |
10 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
11 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
12 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
14 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
15 | 10, 11, 12, 2, 13, 14 | frgpuptf 18183 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
16 | wrdco 13577 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
17 | 9, 15, 16 | syl2anr 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
18 | 10 | gsumwcl 17377 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
19 | 5, 17, 18 | syl2anc 693 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
20 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
21 | 6, 20 | efger 18131 | . . . . 5 ⊢ ∼ Er 𝑊 |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
23 | fvex 6201 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ∈ V | |
24 | 6, 23 | eqeltri 2697 | . . . . 5 ⊢ 𝑊 ∈ V |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
26 | coeq2 5280 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
27 | 26 | oveq2d 6666 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
28 | 10, 11, 12, 2, 13, 14, 6, 20 | frgpuplem 18185 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
29 | 1, 19, 22, 25, 27, 28 | qliftfund 7833 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
30 | 1, 19, 22, 25 | qliftf 7835 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
31 | 29, 30 | mpbid 222 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
32 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
33 | eqid 2622 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜)) | |
34 | 32, 33, 20 | frgpval 18171 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
35 | 13, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
36 | 2on 7568 | . . . . . . . . 9 ⊢ 2𝑜 ∈ On | |
37 | xpexg 6960 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
38 | 13, 36, 37 | sylancl 694 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2𝑜) ∈ V) |
39 | wrdexg 13315 | . . . . . . . 8 ⊢ ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V) | |
40 | fvi 6255 | . . . . . . . 8 ⊢ (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) | |
41 | 38, 39, 40 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) |
42 | 6, 41 | syl5eq 2668 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2𝑜)) |
43 | eqid 2622 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜))) | |
44 | 33, 43 | frmdbas 17389 | . . . . . . 7 ⊢ ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
45 | 38, 44 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
46 | 42, 45 | eqtr4d 2659 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜)))) |
47 | fvex 6201 | . . . . . . 7 ⊢ ( ~FG ‘𝐼) ∈ V | |
48 | 20, 47 | eqeltri 2697 | . . . . . 6 ⊢ ∼ ∈ V |
49 | 48 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
50 | fvexd 6203 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V) | |
51 | 35, 46, 49, 50 | qusbas 16205 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
52 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
53 | 51, 52 | syl6reqr 2675 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
54 | 53 | feq2d 6031 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
55 | 31, 54 | mpbird 247 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 ifcif 4086 〈cop 4183 ↦ cmpt 4729 I cid 5023 × cxp 5112 ran crn 5115 ∘ ccom 5118 Oncon0 5723 Fun wfun 5882 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 2𝑜c2o 7554 Er wer 7739 [cec 7740 / cqs 7741 Word cword 13291 Basecbs 15857 Σg cgsu 16101 /s cqus 16165 Mndcmnd 17294 freeMndcfrmd 17384 Grpcgrp 17422 invgcminusg 17423 ~FG cefg 18119 freeGrpcfrgp 18120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-ot 4186 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-substr 13303 df-splice 13304 df-s2 13593 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-0g 16102 df-gsum 16103 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-frmd 17386 df-grp 17425 df-minusg 17426 df-efg 18122 df-frgp 18123 |
This theorem is referenced by: frgpupval 18187 frgpup1 18188 |
Copyright terms: Public domain | W3C validator |