MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup1 Structured version   Visualization version   GIF version

Theorem frgpup1 18188
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpup1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup1
Dummy variables 𝑎 𝑢 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.x . 2 𝑋 = (Base‘𝐺)
2 frgpup.b . 2 𝐵 = (Base‘𝐻)
3 eqid 2622 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2622 . 2 (+g𝐻) = (+g𝐻)
5 frgpup.i . . 3 (𝜑𝐼𝑉)
6 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
76frgpgrp 18175 . . 3 (𝐼𝑉𝐺 ∈ Grp)
85, 7syl 17 . 2 (𝜑𝐺 ∈ Grp)
9 frgpup.h . 2 (𝜑𝐻 ∈ Grp)
10 frgpup.n . . 3 𝑁 = (invg𝐻)
11 frgpup.t . . 3 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
12 frgpup.a . . 3 (𝜑𝐹:𝐼𝐵)
13 frgpup.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
14 frgpup.r . . 3 = ( ~FG𝐼)
15 frgpup.e . . 3 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
162, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupf 18186 . 2 (𝜑𝐸:𝑋𝐵)
17 eqid 2622 . . . . . . . . . . 11 (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜))
186, 17, 14frgpval 18171 . . . . . . . . . 10 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
195, 18syl 17 . . . . . . . . 9 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
20 2on 7568 . . . . . . . . . . . . 13 2𝑜 ∈ On
21 xpexg 6960 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
225, 20, 21sylancl 694 . . . . . . . . . . . 12 (𝜑 → (𝐼 × 2𝑜) ∈ V)
23 wrdexg 13315 . . . . . . . . . . . 12 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
24 fvi 6255 . . . . . . . . . . . 12 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
2522, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
2613, 25syl5eq 2668 . . . . . . . . . 10 (𝜑𝑊 = Word (𝐼 × 2𝑜))
27 eqid 2622 . . . . . . . . . . . 12 (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜)))
2817, 27frmdbas 17389 . . . . . . . . . . 11 ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
2922, 28syl 17 . . . . . . . . . 10 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
3026, 29eqtr4d 2659 . . . . . . . . 9 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
31 fvex 6201 . . . . . . . . . . 11 ( ~FG𝐼) ∈ V
3214, 31eqeltri 2697 . . . . . . . . . 10 ∈ V
3332a1i 11 . . . . . . . . 9 (𝜑 ∈ V)
34 fvexd 6203 . . . . . . . . 9 (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V)
3519, 30, 33, 34qusbas 16205 . . . . . . . 8 (𝜑 → (𝑊 / ) = (Base‘𝐺))
3635, 1syl6reqr 2675 . . . . . . 7 (𝜑𝑋 = (𝑊 / ))
37 eqimss 3657 . . . . . . 7 (𝑋 = (𝑊 / ) → 𝑋 ⊆ (𝑊 / ))
3836, 37syl 17 . . . . . 6 (𝜑𝑋 ⊆ (𝑊 / ))
3938adantr 481 . . . . 5 ((𝜑𝑎𝑋) → 𝑋 ⊆ (𝑊 / ))
4039sselda 3603 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → 𝑐 ∈ (𝑊 / ))
41 eqid 2622 . . . . 5 (𝑊 / ) = (𝑊 / )
42 oveq2 6658 . . . . . . 7 ([𝑢] = 𝑐 → (𝑎(+g𝐺)[𝑢] ) = (𝑎(+g𝐺)𝑐))
4342fveq2d 6195 . . . . . 6 ([𝑢] = 𝑐 → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)𝑐)))
44 fveq2 6191 . . . . . . 7 ([𝑢] = 𝑐 → (𝐸‘[𝑢] ) = (𝐸𝑐))
4544oveq2d 6666 . . . . . 6 ([𝑢] = 𝑐 → ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
4643, 45eqeq12d 2637 . . . . 5 ([𝑢] = 𝑐 → ((𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐))))
4738sselda 3603 . . . . . . . 8 ((𝜑𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
4847adantlr 751 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → 𝑎 ∈ (𝑊 / ))
49 oveq1 6657 . . . . . . . . . 10 ([𝑡] = 𝑎 → ([𝑡] (+g𝐺)[𝑢] ) = (𝑎(+g𝐺)[𝑢] ))
5049fveq2d 6195 . . . . . . . . 9 ([𝑡] = 𝑎 → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘(𝑎(+g𝐺)[𝑢] )))
51 fveq2 6191 . . . . . . . . . 10 ([𝑡] = 𝑎 → (𝐸‘[𝑡] ) = (𝐸𝑎))
5251oveq1d 6665 . . . . . . . . 9 ([𝑡] = 𝑎 → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
5350, 52eqeq12d 2637 . . . . . . . 8 ([𝑡] = 𝑎 → ((𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) ↔ (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] ))))
54 fviss 6256 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
5513, 54eqsstri 3635 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2𝑜)
5655sseli 3599 . . . . . . . . . . . . . 14 (𝑡𝑊𝑡 ∈ Word (𝐼 × 2𝑜))
5755sseli 3599 . . . . . . . . . . . . . 14 (𝑢𝑊𝑢 ∈ Word (𝐼 × 2𝑜))
58 ccatcl 13359 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2𝑜) ∧ 𝑢 ∈ Word (𝐼 × 2𝑜)) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2𝑜))
5956, 57, 58syl2an 494 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ Word (𝐼 × 2𝑜))
6013efgrcl 18128 . . . . . . . . . . . . . . 15 (𝑡𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
6160adantr 481 . . . . . . . . . . . . . 14 ((𝑡𝑊𝑢𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
6261simprd 479 . . . . . . . . . . . . 13 ((𝑡𝑊𝑢𝑊) → 𝑊 = Word (𝐼 × 2𝑜))
6359, 62eleqtrrd 2704 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → (𝑡 ++ 𝑢) ∈ 𝑊)
642, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 18187 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 ++ 𝑢) ∈ 𝑊) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6563, 64sylan2 491 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))))
6656ad2antrl 764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑡 ∈ Word (𝐼 × 2𝑜))
6757ad2antll 765 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑢 ∈ Word (𝐼 × 2𝑜))
682, 10, 11, 9, 5, 12frgpuptf 18183 . . . . . . . . . . . . . 14 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
6968adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝑇:(𝐼 × 2𝑜)⟶𝐵)
70 ccatco 13581 . . . . . . . . . . . . 13 ((𝑡 ∈ Word (𝐼 × 2𝑜) ∧ 𝑢 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7166, 67, 69, 70syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇 ∘ (𝑡 ++ 𝑢)) = ((𝑇𝑡) ++ (𝑇𝑢)))
7271oveq2d 6666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg (𝑇 ∘ (𝑡 ++ 𝑢))) = (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))))
73 grpmnd 17429 . . . . . . . . . . . . . 14 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
749, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Mnd)
7574adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → 𝐻 ∈ Mnd)
76 wrdco 13577 . . . . . . . . . . . . . 14 ((𝑡 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇𝑡) ∈ Word 𝐵)
7756, 68, 76syl2anr 495 . . . . . . . . . . . . 13 ((𝜑𝑡𝑊) → (𝑇𝑡) ∈ Word 𝐵)
7877adantrr 753 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑡) ∈ Word 𝐵)
79 wrdco 13577 . . . . . . . . . . . . 13 ((𝑢 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇𝑢) ∈ Word 𝐵)
8067, 69, 79syl2anc 693 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝑇𝑢) ∈ Word 𝐵)
812, 4gsumccat 17378 . . . . . . . . . . . 12 ((𝐻 ∈ Mnd ∧ (𝑇𝑡) ∈ Word 𝐵 ∧ (𝑇𝑢) ∈ Word 𝐵) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8275, 78, 80, 81syl3anc 1326 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐻 Σg ((𝑇𝑡) ++ (𝑇𝑢))) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8365, 72, 823eqtrd 2660 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[(𝑡 ++ 𝑢)] ) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
8413, 6, 14, 3frgpadd 18176 . . . . . . . . . . . 12 ((𝑡𝑊𝑢𝑊) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8584adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ([𝑡] (+g𝐺)[𝑢] ) = [(𝑡 ++ 𝑢)] )
8685fveq2d 6195 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = (𝐸‘[(𝑡 ++ 𝑢)] ))
872, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 18187 . . . . . . . . . . . 12 ((𝜑𝑡𝑊) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
8887adantrr 753 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑡] ) = (𝐻 Σg (𝑇𝑡)))
892, 10, 11, 9, 5, 12, 13, 14, 6, 1, 15frgpupval 18187 . . . . . . . . . . . 12 ((𝜑𝑢𝑊) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
9089adantrl 752 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘[𝑢] ) = (𝐻 Σg (𝑇𝑢)))
9188, 90oveq12d 6668 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )) = ((𝐻 Σg (𝑇𝑡))(+g𝐻)(𝐻 Σg (𝑇𝑢))))
9283, 86, 913eqtr4d 2666 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑊𝑢𝑊)) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9392anass1rs 849 . . . . . . . 8 (((𝜑𝑢𝑊) ∧ 𝑡𝑊) → (𝐸‘([𝑡] (+g𝐺)[𝑢] )) = ((𝐸‘[𝑡] )(+g𝐻)(𝐸‘[𝑢] )))
9441, 53, 93ectocld 7814 . . . . . . 7 (((𝜑𝑢𝑊) ∧ 𝑎 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9548, 94syldan 487 . . . . . 6 (((𝜑𝑢𝑊) ∧ 𝑎𝑋) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9695an32s 846 . . . . 5 (((𝜑𝑎𝑋) ∧ 𝑢𝑊) → (𝐸‘(𝑎(+g𝐺)[𝑢] )) = ((𝐸𝑎)(+g𝐻)(𝐸‘[𝑢] )))
9741, 46, 96ectocld 7814 . . . 4 (((𝜑𝑎𝑋) ∧ 𝑐 ∈ (𝑊 / )) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9840, 97syldan 487 . . 3 (((𝜑𝑎𝑋) ∧ 𝑐𝑋) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
9998anasss 679 . 2 ((𝜑 ∧ (𝑎𝑋𝑐𝑋)) → (𝐸‘(𝑎(+g𝐺)𝑐)) = ((𝐸𝑎)(+g𝐻)(𝐸𝑐)))
1001, 2, 3, 4, 8, 9, 16, 99isghmd 17669 1 (𝜑𝐸 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  cop 4183  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  ccom 5118  Oncon0 5723  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  2𝑜c2o 7554  [cec 7740   / cqs 7741  Word cword 13291   ++ cconcat 13293  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101   /s cqus 16165  Mndcmnd 17294  freeMndcfrmd 17384  Grpcgrp 17422  invgcminusg 17423   GrpHom cghm 17657   ~FG cefg 18119  freeGrpcfrgp 18120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-gsum 16103  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-grp 17425  df-minusg 17426  df-ghm 17658  df-efg 18122  df-frgp 18123
This theorem is referenced by:  frgpup3lem  18190  frgpup3  18191
  Copyright terms: Public domain W3C validator