Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 31739
Description: Every (possibly proper) subclass of a class 𝐴 with a founded, set-like relation 𝑅 has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 5711 and tz7.5 5744. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5081 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 5083 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 586 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 3931 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 5684 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2624 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3309 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 450 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 482 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 setlikespec 5701 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → Pred(𝑅, 𝐵, 𝑏) ∈ V)
11 trpredpred 31728 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ∈ V → Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏))
12 ssn0 3976 . . . . . . . . . . . . . 14 ((Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)
1312ex 450 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
1411, 13syl 17 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
15 trpredss 31729 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
1614, 15jctild 566 . . . . . . . . . . 11 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1710, 16syl 17 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1817adantr 481 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
19 trpredex 31737 . . . . . . . . . . 11 TrPred(𝑅, 𝐵, 𝑏) ∈ V
20 sseq1 3626 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐𝐵 ↔ TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵))
21 neeq1 2856 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
2220, 21anbi12d 747 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
23 predeq2 5683 . . . . . . . . . . . . . . 15 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
2423eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2524rexeqbi1dv 3147 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2622, 25imbi12d 334 . . . . . . . . . . . 12 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅)))
2726imbi2d 330 . . . . . . . . . . 11 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅)) ↔ (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))))
28 dffr4 5696 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
29 sp 2053 . . . . . . . . . . . 12 (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3028, 29sylbi 207 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3119, 27, 30vtocl 3259 . . . . . . . . . 10 (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3210, 15syl 17 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
3332adantr 481 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
34 trpredtr 31730 . . . . . . . . . . . . . . . 16 ((𝑏𝐵𝑅 Se 𝐵) → (𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)))
3534imp 445 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏))
36 sspred 5688 . . . . . . . . . . . . . . 15 ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3733, 35, 36syl2anc 693 . . . . . . . . . . . . . 14 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3837eqeq1d 2624 . . . . . . . . . . . . 13 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3938biimprd 238 . . . . . . . . . . . 12 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → Pred(𝑅, 𝐵, 𝑦) = ∅))
4039reximdva 3017 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅))
41 ssrexv 3667 . . . . . . . . . . 11 (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4232, 40, 41sylsyld 61 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4331, 42sylan9r 690 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4418, 43syld 47 . . . . . . . 8 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4544an31s 848 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
469, 45pm2.61dne 2880 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
4746ex 450 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4847exlimdv 1861 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
494, 48syl5bi 232 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
503, 49syl6com 37 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
5150imp32 449 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  wss 3574  c0 3915   Fr wfr 5070   Se wse 5071  Predcpred 5679  TrPredctrpred 31717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  frind  31740
  Copyright terms: Public domain W3C validator