MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorber Structured version   Visualization version   GIF version

Theorem gaorber 17741
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
gaorber.2 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaorber ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Distinct variable groups:   𝑥,𝑔,𝑦,   𝑔,𝑋,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorber
Dummy variables 𝑓 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
21relopabi 5245 . . 3 Rel
32a1i 11 . 2 ( ∈ (𝐺 GrpAct 𝑌) → Rel )
4 simpr 477 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢 𝑣)
51gaorb 17740 . . . . 5 (𝑢 𝑣 ↔ (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
64, 5sylib 208 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (𝑢𝑌𝑣𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑣))
76simp2d 1074 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣𝑌)
86simp1d 1073 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑢𝑌)
96simp3d 1075 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑋 ( 𝑢) = 𝑣)
10 simpll 790 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ∈ (𝐺 GrpAct 𝑌))
11 simpr 477 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑋)
128adantr 481 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑢𝑌)
137adantr 481 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → 𝑣𝑌)
14 gaorber.2 . . . . . . . 8 𝑋 = (Base‘𝐺)
15 eqid 2622 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1614, 15gacan 17738 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑋𝑢𝑌𝑣𝑌)) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
1710, 11, 12, 13, 16syl13anc 1328 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
18 gagrp 17725 . . . . . . . . 9 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
1918adantr 481 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝐺 ∈ Grp)
2014, 15grpinvcl 17467 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
2119, 20sylan 488 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((invg𝐺)‘) ∈ 𝑋)
22 oveq1 6657 . . . . . . . . . 10 (𝑘 = ((invg𝐺)‘) → (𝑘 𝑣) = (((invg𝐺)‘) 𝑣))
2322eqeq1d 2624 . . . . . . . . 9 (𝑘 = ((invg𝐺)‘) → ((𝑘 𝑣) = 𝑢 ↔ (((invg𝐺)‘) 𝑣) = 𝑢))
2423rspcev 3309 . . . . . . . 8 ((((invg𝐺)‘) ∈ 𝑋 ∧ (((invg𝐺)‘) 𝑣) = 𝑢) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
2524ex 450 . . . . . . 7 (((invg𝐺)‘) ∈ 𝑋 → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2621, 25syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → ((((invg𝐺)‘) 𝑣) = 𝑢 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2717, 26sylbid 230 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) ∧ 𝑋) → (( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
2827rexlimdva 3031 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → (∃𝑋 ( 𝑢) = 𝑣 → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
299, 28mpd 15 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑢)
301gaorb 17740 . . 3 (𝑣 𝑢 ↔ (𝑣𝑌𝑢𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑢))
317, 8, 29, 30syl3anbrc 1246 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢 𝑣) → 𝑣 𝑢)
328adantrr 753 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢𝑌)
33 simprr 796 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑣 𝑤)
341gaorb 17740 . . . . 5 (𝑣 𝑤 ↔ (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3533, 34sylib 208 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (𝑣𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
3635simp2d 1074 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑤𝑌)
379adantrr 753 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑋 ( 𝑢) = 𝑣)
3835simp3d 1075 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑘𝑋 (𝑘 𝑣) = 𝑤)
39 reeanv 3107 . . . . 5 (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) ↔ (∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤))
4018ad2antrr 762 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝐺 ∈ Grp)
41 simprlr 803 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑘𝑋)
42 simprll 802 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑋)
43 eqid 2622 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4414, 43grpcl 17430 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘𝑋𝑋) → (𝑘(+g𝐺)) ∈ 𝑋)
4540, 41, 42, 44syl3anc 1326 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘(+g𝐺)) ∈ 𝑋)
46 simpll 790 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∈ (𝐺 GrpAct 𝑌))
4732adantr 481 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → 𝑢𝑌)
4814, 43gaass 17730 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑘𝑋𝑋𝑢𝑌)) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
4946, 41, 42, 47, 48syl13anc 1328 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = (𝑘 ( 𝑢)))
50 simprrl 804 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ( 𝑢) = 𝑣)
5150oveq2d 6666 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 ( 𝑢)) = (𝑘 𝑣))
52 simprrr 805 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → (𝑘 𝑣) = 𝑤)
5349, 51, 523eqtrd 2660 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ((𝑘(+g𝐺)) 𝑢) = 𝑤)
54 oveq1 6657 . . . . . . . . . 10 (𝑓 = (𝑘(+g𝐺)) → (𝑓 𝑢) = ((𝑘(+g𝐺)) 𝑢))
5554eqeq1d 2624 . . . . . . . . 9 (𝑓 = (𝑘(+g𝐺)) → ((𝑓 𝑢) = 𝑤 ↔ ((𝑘(+g𝐺)) 𝑢) = 𝑤))
5655rspcev 3309 . . . . . . . 8 (((𝑘(+g𝐺)) ∈ 𝑋 ∧ ((𝑘(+g𝐺)) 𝑢) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5745, 53, 56syl2anc 693 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ ((𝑋𝑘𝑋) ∧ (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤))) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
5857expr 643 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) ∧ (𝑋𝑘𝑋)) → ((( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
5958rexlimdvva 3038 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → (∃𝑋𝑘𝑋 (( 𝑢) = 𝑣 ∧ (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6039, 59syl5bir 233 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ((∃𝑋 ( 𝑢) = 𝑣 ∧ ∃𝑘𝑋 (𝑘 𝑣) = 𝑤) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6137, 38, 60mp2and 715 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → ∃𝑓𝑋 (𝑓 𝑢) = 𝑤)
621gaorb 17740 . . 3 (𝑢 𝑤 ↔ (𝑢𝑌𝑤𝑌 ∧ ∃𝑓𝑋 (𝑓 𝑢) = 𝑤))
6332, 36, 61, 62syl3anbrc 1246 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢 𝑣𝑣 𝑤)) → 𝑢 𝑤)
6418adantr 481 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → 𝐺 ∈ Grp)
65 eqid 2622 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
6614, 65grpidcl 17450 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
6764, 66syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → (0g𝐺) ∈ 𝑋)
6865gagrpid 17727 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ((0g𝐺) 𝑢) = 𝑢)
69 oveq1 6657 . . . . . . . . 9 ( = (0g𝐺) → ( 𝑢) = ((0g𝐺) 𝑢))
7069eqeq1d 2624 . . . . . . . 8 ( = (0g𝐺) → (( 𝑢) = 𝑢 ↔ ((0g𝐺) 𝑢) = 𝑢))
7170rspcev 3309 . . . . . . 7 (((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝑢) = 𝑢) → ∃𝑋 ( 𝑢) = 𝑢)
7267, 68, 71syl2anc 693 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑢𝑌) → ∃𝑋 ( 𝑢) = 𝑢)
7372ex 450 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 → ∃𝑋 ( 𝑢) = 𝑢))
7473pm4.71rd 667 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌)))
75 df-3an 1039 . . . . 5 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ ((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢))
76 anidm 676 . . . . . 6 ((𝑢𝑌𝑢𝑌) ↔ 𝑢𝑌)
7776anbi2ci 732 . . . . 5 (((𝑢𝑌𝑢𝑌) ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7875, 77bitri 264 . . . 4 ((𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢) ↔ (∃𝑋 ( 𝑢) = 𝑢𝑢𝑌))
7974, 78syl6bbr 278 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢)))
801gaorb 17740 . . 3 (𝑢 𝑢 ↔ (𝑢𝑌𝑢𝑌 ∧ ∃𝑋 ( 𝑢) = 𝑢))
8179, 80syl6bbr 278 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝑢𝑌𝑢 𝑢))
823, 31, 63, 81iserd 7768 1 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  {cpr 4179   class class class wbr 4653  {copab 4712  Rel wrel 5119  cfv 5888  (class class class)co 6650   Er wer 7739  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ga 17723
This theorem is referenced by:  sylow1lem3  18015  sylow1lem5  18017  sylow2alem1  18032  sylow2alem2  18033  sylow2a  18034  sylow3lem3  18044
  Copyright terms: Public domain W3C validator