MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Structured version   Visualization version   GIF version

Theorem gastacl 17742
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
Assertion
Ref Expression
gastacl (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝑋
Allowed substitution hints:   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
2 ssrab2 3687 . . . 4 {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴} ⊆ 𝑋
31, 2eqsstri 3635 . . 3 𝐻𝑋
43a1i 11 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻𝑋)
5 gagrp 17725 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
65adantr 481 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐺 ∈ Grp)
7 gasta.1 . . . . . 6 𝑋 = (Base‘𝐺)
8 eqid 2622 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 17450 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
106, 9syl 17 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝑋)
118gagrpid 17727 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ((0g𝐺) 𝐴) = 𝐴)
12 oveq1 6657 . . . . . 6 (𝑢 = (0g𝐺) → (𝑢 𝐴) = ((0g𝐺) 𝐴))
1312eqeq1d 2624 . . . . 5 (𝑢 = (0g𝐺) → ((𝑢 𝐴) = 𝐴 ↔ ((0g𝐺) 𝐴) = 𝐴))
1413, 1elrab2 3366 . . . 4 ((0g𝐺) ∈ 𝐻 ↔ ((0g𝐺) ∈ 𝑋 ∧ ((0g𝐺) 𝐴) = 𝐴))
1510, 11, 14sylanbrc 698 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (0g𝐺) ∈ 𝐻)
16 ne0i 3921 . . 3 ((0g𝐺) ∈ 𝐻𝐻 ≠ ∅)
1715, 16syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ≠ ∅)
18 simpll 790 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ∈ (𝐺 GrpAct 𝑌))
1918, 5syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐺 ∈ Grp)
20 simpr 477 . . . . . . . . . . 11 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝐻)
21 oveq1 6657 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢 𝐴) = (𝑥 𝐴))
2221eqeq1d 2624 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢 𝐴) = 𝐴 ↔ (𝑥 𝐴) = 𝐴))
2322, 1elrab2 3366 . . . . . . . . . . 11 (𝑥𝐻 ↔ (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2420, 23sylib 208 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥𝑋 ∧ (𝑥 𝐴) = 𝐴))
2524simpld 475 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝑥𝑋)
2625adantrr 753 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑥𝑋)
27 simprr 796 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝐻)
28 oveq1 6657 . . . . . . . . . . . 12 (𝑢 = 𝑦 → (𝑢 𝐴) = (𝑦 𝐴))
2928eqeq1d 2624 . . . . . . . . . . 11 (𝑢 = 𝑦 → ((𝑢 𝐴) = 𝐴 ↔ (𝑦 𝐴) = 𝐴))
3029, 1elrab2 3366 . . . . . . . . . 10 (𝑦𝐻 ↔ (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3127, 30sylib 208 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦𝑋 ∧ (𝑦 𝐴) = 𝐴))
3231simpld 475 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝑦𝑋)
33 eqid 2622 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
347, 33grpcl 17430 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
3519, 26, 32, 34syl3anc 1326 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
36 simplr 792 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → 𝐴𝑌)
377, 33gaass 17730 . . . . . . . . 9 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝑦𝑋𝐴𝑌)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3818, 26, 32, 36, 37syl13anc 1328 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = (𝑥 (𝑦 𝐴)))
3931simprd 479 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑦 𝐴) = 𝐴)
4039oveq2d 6666 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 (𝑦 𝐴)) = (𝑥 𝐴))
4124simprd 479 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (𝑥 𝐴) = 𝐴)
4241adantrr 753 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 𝐴) = 𝐴)
4338, 40, 423eqtrd 2660 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴)
44 oveq1 6657 . . . . . . . . 9 (𝑢 = (𝑥(+g𝐺)𝑦) → (𝑢 𝐴) = ((𝑥(+g𝐺)𝑦) 𝐴))
4544eqeq1d 2624 . . . . . . . 8 (𝑢 = (𝑥(+g𝐺)𝑦) → ((𝑢 𝐴) = 𝐴 ↔ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4645, 1elrab2 3366 . . . . . . 7 ((𝑥(+g𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g𝐺)𝑦) 𝐴) = 𝐴))
4735, 43, 46sylanbrc 698 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝑥𝐻𝑦𝐻)) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4847anassrs 680 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) ∧ 𝑦𝐻) → (𝑥(+g𝐺)𝑦) ∈ 𝐻)
4948ralrimiva 2966 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻)
50 simpll 790 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ∈ (𝐺 GrpAct 𝑌))
5150, 5syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐺 ∈ Grp)
52 eqid 2622 . . . . . . 7 (invg𝐺) = (invg𝐺)
537, 52grpinvcl 17467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
5451, 25, 53syl2anc 693 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝑋)
55 simplr 792 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → 𝐴𝑌)
567, 52gacan 17738 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑥𝑋𝐴𝑌𝐴𝑌)) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5750, 25, 55, 55, 56syl13anc 1328 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((𝑥 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
5841, 57mpbid 222 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (((invg𝐺)‘𝑥) 𝐴) = 𝐴)
59 oveq1 6657 . . . . . . 7 (𝑢 = ((invg𝐺)‘𝑥) → (𝑢 𝐴) = (((invg𝐺)‘𝑥) 𝐴))
6059eqeq1d 2624 . . . . . 6 (𝑢 = ((invg𝐺)‘𝑥) → ((𝑢 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6160, 1elrab2 3366 . . . . 5 (((invg𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg𝐺)‘𝑥) 𝐴) = 𝐴))
6254, 58, 61sylanbrc 698 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → ((invg𝐺)‘𝑥) ∈ 𝐻)
6349, 62jca 554 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐻) → (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
6463ralrimiva 2966 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))
657, 33, 52issubg2 17609 . . 3 (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
666, 65syl 17 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻𝑋𝐻 ≠ ∅ ∧ ∀𝑥𝐻 (∀𝑦𝐻 (𝑥(+g𝐺)𝑦) ∈ 𝐻 ∧ ((invg𝐺)‘𝑥) ∈ 𝐻))))
674, 17, 64, 66mpbir3and 1245 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-ga 17723
This theorem is referenced by:  gastacos  17743  orbstafun  17744  orbstaval  17745  orbsta  17746  orbsta2  17747  sylow1lem5  18017
  Copyright terms: Public domain W3C validator