| Step | Hyp | Ref
| Expression |
| 1 | | gasta.2 |
. . . 4
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} |
| 2 | | ssrab2 3687 |
. . . 4
⊢ {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} ⊆ 𝑋 |
| 3 | 1, 2 | eqsstri 3635 |
. . 3
⊢ 𝐻 ⊆ 𝑋 |
| 4 | 3 | a1i 11 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ⊆ 𝑋) |
| 5 | | gagrp 17725 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
| 6 | 5 | adantr 481 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐺 ∈ Grp) |
| 7 | | gasta.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
| 8 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 9 | 7, 8 | grpidcl 17450 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
| 10 | 6, 9 | syl 17 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝑋) |
| 11 | 8 | gagrpid 17727 |
. . . 4
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝐴) = 𝐴) |
| 12 | | oveq1 6657 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (𝑢 ⊕ 𝐴) = ((0g‘𝐺) ⊕ 𝐴)) |
| 13 | 12 | eqeq1d 2624 |
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
| 14 | 13, 1 | elrab2 3366 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝐻 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ((0g‘𝐺) ⊕ 𝐴) = 𝐴)) |
| 15 | 10, 11, 14 | sylanbrc 698 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (0g‘𝐺) ∈ 𝐻) |
| 16 | | ne0i 3921 |
. . 3
⊢
((0g‘𝐺) ∈ 𝐻 → 𝐻 ≠ ∅) |
| 17 | 15, 16 | syl 17 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ≠ ∅) |
| 18 | | simpll 790 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 19 | 18, 5 | syl 17 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐺 ∈ Grp) |
| 20 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝐻) |
| 21 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → (𝑢 ⊕ 𝐴) = (𝑥 ⊕ 𝐴)) |
| 22 | 21 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑥 ⊕ 𝐴) = 𝐴)) |
| 23 | 22, 1 | elrab2 3366 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐻 ↔ (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
| 24 | 20, 23 | sylib 208 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ∈ 𝑋 ∧ (𝑥 ⊕ 𝐴) = 𝐴)) |
| 25 | 24 | simpld 475 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ 𝑋) |
| 26 | 25 | adantrr 753 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑥 ∈ 𝑋) |
| 27 | | simprr 796 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝐻) |
| 28 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑦 → (𝑢 ⊕ 𝐴) = (𝑦 ⊕ 𝐴)) |
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑦 → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (𝑦 ⊕ 𝐴) = 𝐴)) |
| 30 | 29, 1 | elrab2 3366 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐻 ↔ (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
| 31 | 27, 30 | sylib 208 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ∈ 𝑋 ∧ (𝑦 ⊕ 𝐴) = 𝐴)) |
| 32 | 31 | simpld 475 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝑦 ∈ 𝑋) |
| 33 | | eqid 2622 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 34 | 7, 33 | grpcl 17430 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
| 35 | 19, 26, 32, 34 | syl3anc 1326 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑋) |
| 36 | | simplr 792 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → 𝐴 ∈ 𝑌) |
| 37 | 7, 33 | gaass 17730 |
. . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
| 38 | 18, 26, 32, 36, 37 | syl13anc 1328 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = (𝑥 ⊕ (𝑦 ⊕ 𝐴))) |
| 39 | 31 | simprd 479 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑦 ⊕ 𝐴) = 𝐴) |
| 40 | 39 | oveq2d 6666 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ (𝑦 ⊕ 𝐴)) = (𝑥 ⊕ 𝐴)) |
| 41 | 24 | simprd 479 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (𝑥 ⊕ 𝐴) = 𝐴) |
| 42 | 41 | adantrr 753 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 ⊕ 𝐴) = 𝐴) |
| 43 | 38, 40, 42 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴) |
| 44 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → (𝑢 ⊕ 𝐴) = ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴)) |
| 45 | 44 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑢 = (𝑥(+g‘𝐺)𝑦) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
| 46 | 45, 1 | elrab2 3366 |
. . . . . . 7
⊢ ((𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ↔ ((𝑥(+g‘𝐺)𝑦) ∈ 𝑋 ∧ ((𝑥(+g‘𝐺)𝑦) ⊕ 𝐴) = 𝐴)) |
| 47 | 35, 43, 46 | sylanbrc 698 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
| 48 | 47 | anassrs 680 |
. . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) ∧ 𝑦 ∈ 𝐻) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
| 49 | 48 | ralrimiva 2966 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻) |
| 50 | | simpll 790 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 51 | 50, 5 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐺 ∈ Grp) |
| 52 | | eqid 2622 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 53 | 7, 52 | grpinvcl 17467 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
| 54 | 51, 25, 53 | syl2anc 693 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝑋) |
| 55 | | simplr 792 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → 𝐴 ∈ 𝑌) |
| 56 | 7, 52 | gacan 17738 |
. . . . . . 7
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ 𝐴 ∈ 𝑌)) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
| 57 | 50, 25, 55, 55, 56 | syl13anc 1328 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((𝑥 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
| 58 | 41, 57 | mpbid 222 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴) |
| 59 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → (𝑢 ⊕ 𝐴) = (((invg‘𝐺)‘𝑥) ⊕ 𝐴)) |
| 60 | 59 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑢 = ((invg‘𝐺)‘𝑥) → ((𝑢 ⊕ 𝐴) = 𝐴 ↔ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
| 61 | 60, 1 | elrab2 3366 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑥) ∈ 𝐻 ↔ (((invg‘𝐺)‘𝑥) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑥) ⊕ 𝐴) = 𝐴)) |
| 62 | 54, 58, 61 | sylanbrc 698 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → ((invg‘𝐺)‘𝑥) ∈ 𝐻) |
| 63 | 49, 62 | jca 554 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑥 ∈ 𝐻) → (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
| 64 | 63 | ralrimiva 2966 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)) |
| 65 | 7, 33, 52 | issubg2 17609 |
. . 3
⊢ (𝐺 ∈ Grp → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
| 66 | 6, 65 | syl 17 |
. 2
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → (𝐻 ∈ (SubGrp‘𝐺) ↔ (𝐻 ⊆ 𝑋 ∧ 𝐻 ≠ ∅ ∧ ∀𝑥 ∈ 𝐻 (∀𝑦 ∈ 𝐻 (𝑥(+g‘𝐺)𝑦) ∈ 𝐻 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝐻)))) |
| 67 | 4, 17, 64, 66 | mpbir3and 1245 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) |