MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchdomtri Structured version   Visualization version   Unicode version

Theorem gchdomtri 9451
Description: Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 9503. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchdomtri  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  ( A  ~<_  B  \/  B  ~<_  A ) )

Proof of Theorem gchdomtri
StepHypRef Expression
1 sdomdom 7983 . . . . 5  |-  ( A 
~<  B  ->  A  ~<_  B )
21con3i 150 . . . 4  |-  ( -.  A  ~<_  B  ->  -.  A  ~<  B )
3 reldom 7961 . . . . . . 7  |-  Rel  ~<_
43brrelexi 5158 . . . . . 6  |-  ( B  ~<_  ~P A  ->  B  e.  _V )
543ad2ant3 1084 . . . . 5  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  B  e.  _V )
6 fidomtri2 8820 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  Fin )  ->  ( B  ~<_  A  <->  -.  A  ~<  B ) )
75, 6sylan 488 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  A  e.  Fin )  ->  ( B  ~<_  A  <->  -.  A  ~<  B ) )
82, 7syl5ibr 236 . . 3  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  A  e.  Fin )  ->  ( -.  A  ~<_  B  ->  B  ~<_  A ) )
98orrd 393 . 2  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  A  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
10 simp1 1061 . . . . 5  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  A  e. GCH )
1110adantr 481 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  A  e. GCH )
12 simpr 477 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  -.  A  e.  Fin )
13 cdadom3 9010 . . . . . 6  |-  ( ( A  e. GCH  /\  B  e.  _V )  ->  A  ~<_  ( A  +c  B
) )
1410, 5, 13syl2anc 693 . . . . 5  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  A  ~<_  ( A  +c  B ) )
1514adantr 481 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  +c  B ) )
16 cdalepw 9018 . . . . . 6  |-  ( ( ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  -> 
( A  +c  B
)  ~<_  ~P A )
17163adant1 1079 . . . . 5  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  ( A  +c  B )  ~<_  ~P A
)
1817adantr 481 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  ( A  +c  B )  ~<_  ~P A
)
19 gchor 9449 . . . 4  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  +c  B )  /\  ( A  +c  B )  ~<_  ~P A
) )  ->  ( A  ~~  ( A  +c  B )  \/  ( A  +c  B )  ~~  ~P A ) )
2011, 12, 15, 18, 19syl22anc 1327 . . 3  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  ( A  ~~  ( A  +c  B
)  \/  ( A  +c  B )  ~~  ~P A ) )
21 cdadom3 9010 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  A  e. GCH )  ->  B  ~<_  ( B  +c  A
) )
225, 10, 21syl2anc 693 . . . . . . . 8  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  B  ~<_  ( B  +c  A ) )
23 cdacomen 9003 . . . . . . . 8  |-  ( B  +c  A )  ~~  ( A  +c  B
)
24 domentr 8015 . . . . . . . 8  |-  ( ( B  ~<_  ( B  +c  A )  /\  ( B  +c  A )  ~~  ( A  +c  B
) )  ->  B  ~<_  ( A  +c  B
) )
2522, 23, 24sylancl 694 . . . . . . 7  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  B  ~<_  ( A  +c  B ) )
26 domen2 8103 . . . . . . 7  |-  ( A 
~~  ( A  +c  B )  ->  ( B  ~<_  A  <->  B  ~<_  ( A  +c  B ) ) )
2725, 26syl5ibrcom 237 . . . . . 6  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  ( A  ~~  ( A  +c  B
)  ->  B  ~<_  A ) )
2827imp 445 . . . . 5  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  A  ~~  ( A  +c  B ) )  ->  B  ~<_  A )
2928olcd 408 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  A  ~~  ( A  +c  B ) )  -> 
( A  ~<_  B  \/  B  ~<_  A ) )
30 simpl1 1064 . . . . . . 7  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  A  e. GCH )
31 canth2g 8114 . . . . . . 7  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
32 sdomdom 7983 . . . . . . 7  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
3330, 31, 323syl 18 . . . . . 6  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  A  ~<_  ~P A
)
34 simpl2 1065 . . . . . . . . 9  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ( A  +c  A )  ~~  A
)
35 pwen 8133 . . . . . . . . 9  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
3634, 35syl 17 . . . . . . . 8  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ~P ( A  +c  A )  ~~  ~P A )
37 enen2 8101 . . . . . . . . 9  |-  ( ( A  +c  B ) 
~~  ~P A  ->  ( ~P ( A  +c  A
)  ~~  ( A  +c  B )  <->  ~P ( A  +c  A )  ~~  ~P A ) )
3837adantl 482 . . . . . . . 8  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ( ~P ( A  +c  A
)  ~~  ( A  +c  B )  <->  ~P ( A  +c  A )  ~~  ~P A ) )
3936, 38mpbird 247 . . . . . . 7  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ~P ( A  +c  A )  ~~  ( A  +c  B
) )
40 endom 7982 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~~  ( A  +c  B )  ->  ~P ( A  +c  A
)  ~<_  ( A  +c  B ) )
41 pwcdadom 9038 . . . . . . 7  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  B )  ->  ~P A  ~<_  B )
4239, 40, 413syl 18 . . . . . 6  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ~P A  ~<_  B )
43 domtr 8009 . . . . . 6  |-  ( ( A  ~<_  ~P A  /\  ~P A  ~<_  B )  ->  A  ~<_  B )
4433, 42, 43syl2anc 693 . . . . 5  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  A  ~<_  B )
4544orcd 407 . . . 4  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  +c  B
)  ~~  ~P A
)  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
4629, 45jaodan 826 . . 3  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  ( A  ~~  ( A  +c  B )  \/  ( A  +c  B
)  ~~  ~P A
) )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
4720, 46syldan 487 . 2  |-  ( ( ( A  e. GCH  /\  ( A  +c  A
)  ~~  A  /\  B  ~<_  ~P A )  /\  -.  A  e.  Fin )  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
489, 47pm2.61dan 832 1  |-  ( ( A  e. GCH  /\  ( A  +c  A )  ~~  A  /\  B  ~<_  ~P A
)  ->  ( A  ~<_  B  \/  B  ~<_  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955    +c ccda 8989  GCHcgch 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-cda 8990  df-gch 9443
This theorem is referenced by:  gchaclem  9500
  Copyright terms: Public domain W3C validator