Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtinfOLD Structured version   Visualization version   GIF version

Theorem gtinfOLD 32314
Description: Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) Obsolete version of gtinf 32313 as of 10-Oct-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
gtinfOLD (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
Distinct variable groups:   𝑧,𝐴   𝑥,𝑦,𝑧,𝑆
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem gtinfOLD
StepHypRef Expression
1 simprl 794 . . 3 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → 𝐴 ∈ ℝ)
2 gtso 10119 . . . . . . 7 < Or ℝ
32supex 8369 . . . . . 6 sup(𝑆, ℝ, < ) ∈ V
4 brcnvg 5303 . . . . . 6 ((𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) ∈ V) → (𝐴 < sup(𝑆, ℝ, < ) ↔ sup(𝑆, ℝ, < ) < 𝐴))
53, 4mpan2 707 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < sup(𝑆, ℝ, < ) ↔ sup(𝑆, ℝ, < ) < 𝐴))
65biimpar 502 . . . 4 ((𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴) → 𝐴 < sup(𝑆, ℝ, < ))
76adantl 482 . . 3 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → 𝐴 < sup(𝑆, ℝ, < ))
82a1i 11 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → < Or ℝ)
9 infm3 10982 . . . . . 6 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
10 vex 3203 . . . . . . . . . . 11 𝑥 ∈ V
11 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
1210, 11brcnv 5305 . . . . . . . . . 10 (𝑥 < 𝑦𝑦 < 𝑥)
1312notbii 310 . . . . . . . . 9 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
1413ralbii 2980 . . . . . . . 8 (∀𝑦𝑆 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝑆 ¬ 𝑦 < 𝑥)
1511, 10brcnv 5305 . . . . . . . . . 10 (𝑦 < 𝑥𝑥 < 𝑦)
16 vex 3203 . . . . . . . . . . . 12 𝑧 ∈ V
1711, 16brcnv 5305 . . . . . . . . . . 11 (𝑦 < 𝑧𝑧 < 𝑦)
1817rexbii 3041 . . . . . . . . . 10 (∃𝑧𝑆 𝑦 < 𝑧 ↔ ∃𝑧𝑆 𝑧 < 𝑦)
1915, 18imbi12i 340 . . . . . . . . 9 ((𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
2019ralbii 2980 . . . . . . . 8 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦))
2114, 20anbi12i 733 . . . . . . 7 ((∀𝑦𝑆 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧)) ↔ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
2221rexbii 3041 . . . . . 6 (∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
239, 22sylibr 224 . . . . 5 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧)))
2423adantr 481 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑆 𝑦 < 𝑧)))
258, 24suplub 8366 . . 3 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ((𝐴 ∈ ℝ ∧ 𝐴 < sup(𝑆, ℝ, < )) → ∃𝑧𝑆 𝐴 < 𝑧))
261, 7, 25mp2and 715 . 2 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝐴 < 𝑧)
27 brcnvg 5303 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ V) → (𝐴 < 𝑧𝑧 < 𝐴))
2816, 27mpan2 707 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 𝑧𝑧 < 𝐴))
2928rexbidv 3052 . . 3 (𝐴 ∈ ℝ → (∃𝑧𝑆 𝐴 < 𝑧 ↔ ∃𝑧𝑆 𝑧 < 𝐴))
3029ad2antrl 764 . 2 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → (∃𝑧𝑆 𝐴 < 𝑧 ↔ ∃𝑧𝑆 𝑧 < 𝐴))
3126, 30mpbid 222 1 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑥𝑦) ∧ (𝐴 ∈ ℝ ∧ sup(𝑆, ℝ, < ) < 𝐴)) → ∃𝑧𝑆 𝑧 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034  ccnv 5113  supcsup 8346  cr 9935   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator