HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   GIF version

Theorem normlem0 27966
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
Assertion
Ref Expression
normlem0 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
42, 3hvmulcli 27871 . . . . 5 (𝑆 · 𝐺) ∈ ℋ
51, 4hvsubvali 27877 . . . 4 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
62mulm1i 10475 . . . . . . 7 (-1 · 𝑆) = -𝑆
76oveq1i 6660 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-𝑆 · 𝐺)
8 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
98, 2, 3hvmulassi 27903 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-1 · (𝑆 · 𝐺))
107, 9eqtr3i 2646 . . . . 5 (-𝑆 · 𝐺) = (-1 · (𝑆 · 𝐺))
1110oveq2i 6661 . . . 4 (𝐹 + (-𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
125, 11eqtr4i 2647 . . 3 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-𝑆 · 𝐺))
1312, 12oveq12i 6662 . 2 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺)))
142negcli 10349 . . . 4 -𝑆 ∈ ℂ
1514, 3hvmulcli 27871 . . 3 (-𝑆 · 𝐺) ∈ ℋ
161, 15hvaddcli 27875 . . 3 (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ
17 ax-his2 27940 . . 3 ((𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))))
181, 15, 16, 17mp3an 1424 . 2 ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))))
19 his7 27947 . . . . 5 ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))))
201, 1, 15, 19mp3an 1424 . . . 4 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺)))
21 his5 27943 . . . . . . 7 ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)))
2214, 1, 3, 21mp3an 1424 . . . . . 6 (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))
232cjnegi 13922 . . . . . . 7 (∗‘-𝑆) = -(∗‘𝑆)
2423oveq1i 6660 . . . . . 6 ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2522, 24eqtri 2644 . . . . 5 (𝐹 ·ih (-𝑆 · 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2625oveq2i 6661 . . . 4 ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
2720, 26eqtri 2644 . . 3 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
28 ax-his3 27941 . . . . 5 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))))
2914, 3, 16, 28mp3an 1424 . . . 4 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))))
30 his7 27947 . . . . . . 7 ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))))
313, 1, 15, 30mp3an 1424 . . . . . 6 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺)))
32 his5 27943 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3314, 3, 3, 32mp3an 1424 . . . . . . 7 (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))
3433oveq2i 6661 . . . . . 6 ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3531, 34eqtri 2644 . . . . 5 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3635oveq2i 6661 . . . 4 (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
373, 1hicli 27938 . . . . . 6 (𝐺 ·ih 𝐹) ∈ ℂ
3814cjcli 13909 . . . . . . 7 (∗‘-𝑆) ∈ ℂ
393, 3hicli 27938 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
4038, 39mulcli 10045 . . . . . 6 ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) ∈ ℂ
4114, 37, 40adddii 10050 . . . . 5 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
4214, 38, 39mulassi 10049 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
4323oveq2i 6661 . . . . . . . . 9 (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆))
442cjcli 13909 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
452, 44mul2negi 10478 . . . . . . . . 9 (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆))
4643, 45eqtri 2644 . . . . . . . 8 (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆))
4746oveq1i 6660 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4842, 47eqtr3i 2646 . . . . . 6 (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4948oveq2i 6661 . . . . 5 ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5041, 49eqtri 2644 . . . 4 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5129, 36, 503eqtri 2648 . . 3 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5227, 51oveq12i 6662 . 2 ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
5313, 18, 523eqtri 2648 1 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  ccj 13836  chil 27776   + cva 27777   · csm 27778   ·ih csp 27779   cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hfvmul 27862  ax-hvmulass 27864  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828
This theorem is referenced by:  normlem1  27967
  Copyright terms: Public domain W3C validator