Proof of Theorem hmeores
| Step | Hyp | Ref
| Expression |
| 1 | | hmeocn 21563 |
. . . . 5
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 3 | | hmeores.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 4 | 3 | cnrest 21089 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 5 | 2, 4 | sylancom 701 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 6 | | cntop2 21045 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 7 | 2, 6 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
| 8 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 9 | 8 | toptopon 20722 |
. . . . 5
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 10 | 7, 9 | sylib 208 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 11 | | df-ima 5127 |
. . . . . 6
⊢ (𝐹 “ 𝑌) = ran (𝐹 ↾ 𝑌) |
| 12 | 11 | eqimss2i 3660 |
. . . . 5
⊢ ran
(𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌) |
| 13 | 12 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran (𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌)) |
| 14 | | imassrn 5477 |
. . . . 5
⊢ (𝐹 “ 𝑌) ⊆ ran 𝐹 |
| 15 | 3, 8 | cnf 21050 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 16 | 2, 15 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
| 17 | | frn 6053 |
. . . . . 6
⊢ (𝐹:𝑋⟶∪ 𝐾 → ran 𝐹 ⊆ ∪ 𝐾) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran 𝐹 ⊆ ∪ 𝐾) |
| 19 | 14, 18 | syl5ss 3614 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 “ 𝑌) ⊆ ∪ 𝐾) |
| 20 | | cnrest2 21090 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ ran (𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌) ∧ (𝐹 “ 𝑌) ⊆ ∪ 𝐾) → ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾) ↔ (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))))) |
| 21 | 10, 13, 19, 20 | syl3anc 1326 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾) ↔ (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))))) |
| 22 | 5, 21 | mpbid 222 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌)))) |
| 23 | | hmeocnvcn 21564 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| 24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| 25 | 8, 3 | cnf 21050 |
. . . . 5
⊢ (◡𝐹 ∈ (𝐾 Cn 𝐽) → ◡𝐹:∪ 𝐾⟶𝑋) |
| 26 | | ffun 6048 |
. . . . 5
⊢ (◡𝐹:∪ 𝐾⟶𝑋 → Fun ◡𝐹) |
| 27 | | funcnvres 5967 |
. . . . 5
⊢ (Fun
◡𝐹 → ◡(𝐹 ↾ 𝑌) = (◡𝐹 ↾ (𝐹 “ 𝑌))) |
| 28 | 24, 25, 26, 27 | 4syl 19 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) = (◡𝐹 ↾ (𝐹 “ 𝑌))) |
| 29 | 8 | cnrest 21089 |
. . . . 5
⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ (𝐹 “ 𝑌) ⊆ ∪ 𝐾) → (◡𝐹 ↾ (𝐹 “ 𝑌)) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 30 | 24, 19, 29 | syl2anc 693 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (◡𝐹 ↾ (𝐹 “ 𝑌)) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 31 | 28, 30 | eqeltrd 2701 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 32 | | cntop1 21044 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| 33 | 2, 32 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 34 | 3 | toptopon 20722 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 35 | 33, 34 | sylib 208 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 36 | | dfdm4 5316 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝑌) = ran ◡(𝐹 ↾ 𝑌) |
| 37 | | fssres 6070 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶∪ 𝐾 ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌):𝑌⟶∪ 𝐾) |
| 38 | 16, 37 | sylancom 701 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌):𝑌⟶∪ 𝐾) |
| 39 | | fdm 6051 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝑌):𝑌⟶∪ 𝐾 → dom (𝐹 ↾ 𝑌) = 𝑌) |
| 40 | 38, 39 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → dom (𝐹 ↾ 𝑌) = 𝑌) |
| 41 | 36, 40 | syl5eqr 2670 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran ◡(𝐹 ↾ 𝑌) = 𝑌) |
| 42 | | eqimss 3657 |
. . . . 5
⊢ (ran
◡(𝐹 ↾ 𝑌) = 𝑌 → ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌) |
| 43 | 41, 42 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌) |
| 44 | | simpr 477 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝑌 ⊆ 𝑋) |
| 45 | | cnrest2 21090 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋) → (◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽) ↔ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 46 | 35, 43, 44, 45 | syl3anc 1326 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽) ↔ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 47 | 31, 46 | mpbid 222 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌))) |
| 48 | | ishmeo 21562 |
. 2
⊢ ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌))) ↔ ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))) ∧ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 49 | 22, 47, 48 | sylanbrc 698 |
1
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌)))) |