| Step | Hyp | Ref
| Expression |
| 1 | | n0 3931 |
. 2
⊢ ((𝑆‘𝑈) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑆‘𝑈)) |
| 2 | | simpl2 1065 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ∈ 𝐽) |
| 3 | | simpl1 1064 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 4 | | cvmtop1 31242 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐶 ∈ Top) |
| 6 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝐶 ∈ Top) |
| 7 | | cvmcov.1 |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 8 | 7 | cvmsss 31249 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ⊆ 𝐶) |
| 9 | 8 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ⊆ 𝐶) |
| 10 | 9 | sselda 3603 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐶) |
| 11 | | cvmcn 31244 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 12 | 3, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 13 | | cnima 21069 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑉 ∈ 𝐽) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
| 14 | 12, 2, 13 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
| 15 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (◡𝐹 “ 𝑉) ∈ 𝐶) |
| 16 | | inopn 20704 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Top ∧ 𝑦 ∈ 𝐶 ∧ (◡𝐹 “ 𝑉) ∈ 𝐶) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) |
| 17 | 6, 10, 15, 16 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝐶) |
| 18 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 19 | 17, 18 | fmptd 6385 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝐶) |
| 20 | | frn 6053 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝐶 → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶) |
| 22 | 7 | cvmsn0 31250 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑥 ≠ ∅) |
| 23 | 22 | adantl 482 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑥 ≠ ∅) |
| 24 | | dmmptg 5632 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V → dom (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥) |
| 25 | | inex1g 4801 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑥 → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ V) |
| 26 | 24, 25 | mprg 2926 |
. . . . . . . . . . 11
⊢ dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = 𝑥 |
| 27 | 26 | eqeq1i 2627 |
. . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ 𝑥 = ∅) |
| 28 | | dm0rn0 5342 |
. . . . . . . . . 10
⊢ (dom
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) |
| 29 | 27, 28 | bitr3i 266 |
. . . . . . . . 9
⊢ (𝑥 = ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = ∅) |
| 30 | 29 | necon3bii 2846 |
. . . . . . . 8
⊢ (𝑥 ≠ ∅ ↔ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) |
| 31 | 23, 30 | sylib 208 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) |
| 32 | 21, 31 | jca 554 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅)) |
| 33 | | inss2 3834 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉) |
| 34 | | elpw2g 4827 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ 𝑉) ∈ 𝐶 → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) |
| 35 | 15, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ⊆ (◡𝐹 “ 𝑉))) |
| 36 | 33, 35 | mpbiri 248 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑦 ∈ 𝑥) → (𝑦 ∩ (◡𝐹 “ 𝑉)) ∈ 𝒫 (◡𝐹 “ 𝑉)) |
| 37 | 36, 18 | fmptd 6385 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝒫 (◡𝐹 “ 𝑉)) |
| 38 | | frn 6053 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))):𝑥⟶𝒫 (◡𝐹 “ 𝑉) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉)) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉)) |
| 40 | | sspwuni 4611 |
. . . . . . . . 9
⊢ (ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝒫 (◡𝐹 “ 𝑉) ↔ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) |
| 41 | 39, 40 | sylib 208 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ (◡𝐹 “ 𝑉)) |
| 42 | | simpl3 1066 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑉 ⊆ 𝑈) |
| 43 | | imass2 5501 |
. . . . . . . . . . . . . 14
⊢ (𝑉 ⊆ 𝑈 → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ (◡𝐹 “ 𝑈)) |
| 45 | 7 | cvmsuni 31251 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑆‘𝑈) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) |
| 46 | 45 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ 𝑥 = (◡𝐹 “ 𝑈)) |
| 47 | 44, 46 | sseqtr4d 3642 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ ∪ 𝑥) |
| 48 | 47 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ 𝑥) |
| 49 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉)) |
| 50 | | ineq1 3807 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑡 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) |
| 51 | 50 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑡 → ((𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉)) ↔ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 52 | 51 | rspcev 3309 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∈ 𝑥 ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 53 | 49, 52 | mpan2 707 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑥 → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 54 | 53 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 55 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑡 ∈ V |
| 56 | 55 | inex1 4799 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V |
| 57 | 18 | elrnmpt 5372 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 59 | 54, 58 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 60 | | simprr 796 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ 𝑡) |
| 61 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (◡𝐹 “ 𝑉)) |
| 62 | 60, 61 | elind 3798 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
| 63 | | eleq2 2690 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 64 | 63 | rspcev 3309 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ∈ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
| 65 | 59, 62, 64 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) ∧ (𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡)) → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
| 66 | 65 | rexlimdvaa 3032 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (∃𝑡 ∈ 𝑥 𝑧 ∈ 𝑡 → ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤)) |
| 67 | | eluni2 4440 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∪ 𝑥
↔ ∃𝑡 ∈
𝑥 𝑧 ∈ 𝑡) |
| 68 | | eluni2 4440 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))𝑧 ∈ 𝑤) |
| 69 | 66, 67, 68 | 3imtr4g 285 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → (𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))))) |
| 70 | 48, 69 | mpd 15 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑧 ∈ (◡𝐹 “ 𝑉)) → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 71 | 70 | ex 450 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑧 ∈ (◡𝐹 “ 𝑉) → 𝑧 ∈ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))))) |
| 72 | 71 | ssrdv 3609 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (◡𝐹 “ 𝑉) ⊆ ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 73 | 41, 72 | eqssd 3620 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉)) |
| 74 | | eldifsn 4317 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) ↔ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 75 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
| 76 | 18 | elrnmpt 5372 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 77 | 75, 76 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ↔ ∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 78 | 50 | equcoms 1947 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑦 → (𝑦 ∩ (◡𝐹 “ 𝑉)) = (𝑡 ∩ (◡𝐹 “ 𝑉))) |
| 79 | 78 | necon3ai 2819 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ¬ 𝑡 = 𝑦) |
| 80 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) |
| 81 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑡 ∈ 𝑥) |
| 82 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 83 | 7 | cvmsdisj 31252 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) |
| 84 | 80, 81, 82, 83 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑡 = 𝑦 ∨ (𝑡 ∩ 𝑦) = ∅)) |
| 85 | 84 | ord 392 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (¬ 𝑡 = 𝑦 → (𝑡 ∩ 𝑦) = ∅)) |
| 86 | | inss1 3833 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) |
| 87 | | sseq0 3975 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) ⊆ (𝑡 ∩ 𝑦) ∧ (𝑡 ∩ 𝑦) = ∅) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) |
| 88 | 86, 87 | mpan 706 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∩ 𝑦) = ∅ → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅) |
| 89 | 79, 85, 88 | syl56 36 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) |
| 90 | | neeq1 2856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) ↔ (𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 91 | | ineq2 3808 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉)))) |
| 92 | | inindir 3831 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ (𝑦 ∩ (◡𝐹 “ 𝑉))) |
| 93 | 91, 92 | syl6eqr 2674 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉))) |
| 94 | 93 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅)) |
| 95 | 90, 94 | imbi12d 334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → ((𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) ↔ ((𝑦 ∩ (◡𝐹 “ 𝑉)) ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ 𝑦) ∩ (◡𝐹 “ 𝑉)) = ∅))) |
| 96 | 89, 95 | syl5ibrcom 237 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) ∧ 𝑦 ∈ 𝑥) → (𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
| 97 | 96 | rexlimdva 3031 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∃𝑦 ∈ 𝑥 𝑧 = (𝑦 ∩ (◡𝐹 “ 𝑉)) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
| 98 | 77, 97 | syl5bi 232 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) → (𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅))) |
| 99 | 98 | impd 447 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝑧 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∧ 𝑧 ≠ (𝑡 ∩ (◡𝐹 “ 𝑉))) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
| 100 | 74, 99 | syl5bi 232 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))}) → ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
| 101 | 100 | ralrimiv 2965 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅) |
| 102 | | inss1 3833 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 |
| 103 | | resabs1 5427 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 104 | 102, 103 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
| 105 | 7 | cvmshmeo 31253 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) |
| 106 | 105 | adantll 750 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈))) |
| 107 | 5 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐶 ∈ Top) |
| 108 | 9 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝐶) |
| 109 | | elssuni 4467 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ⊆ ∪ 𝐶) |
| 111 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝐶 =
∪ 𝐶 |
| 112 | 111 | restuni 20966 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ Top ∧ 𝑡 ⊆ ∪ 𝐶)
→ 𝑡 = ∪ (𝐶
↾t 𝑡)) |
| 113 | 107, 110,
112 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 = ∪ (𝐶 ↾t 𝑡)) |
| 114 | 102, 113 | syl5sseq 3653 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) |
| 115 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ ∪ (𝐶
↾t 𝑡) =
∪ (𝐶 ↾t 𝑡) |
| 116 | 115 | hmeores 21574 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ 𝑡) ∈ ((𝐶 ↾t 𝑡)Homeo(𝐽 ↾t 𝑈)) ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ ∪
(𝐶 ↾t
𝑡)) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
| 117 | 106, 114,
116 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
| 118 | 104, 117 | syl5eqelr 2706 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))))) |
| 119 | 102 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡) |
| 120 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑡 ∈ 𝑥) |
| 121 | | restabs 20969 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Top ∧ (𝑡 ∩ (◡𝐹 “ 𝑉)) ⊆ 𝑡 ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 122 | 107, 119,
120, 121 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉))) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 123 | | incom 3805 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = ((◡𝐹 “ 𝑉) ∩ 𝑡) |
| 124 | | cnvresima 5623 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝐹 ↾ 𝑡) “ 𝑉) = ((◡𝐹 “ 𝑉) ∩ 𝑡) |
| 125 | 123, 124 | eqtr4i 2647 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∩ (◡𝐹 “ 𝑉)) = (◡(𝐹 ↾ 𝑡) “ 𝑉) |
| 126 | 125 | imaeq2i 5464 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) |
| 127 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 128 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑥 ∈ (𝑆‘𝑈)) |
| 129 | 7 | cvmsf1o 31254 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ (𝑆‘𝑈) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) |
| 130 | 127, 128,
120, 129 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈) |
| 131 | | f1ofo 6144 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ↾ 𝑡):𝑡–1-1-onto→𝑈 → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ 𝑡):𝑡–onto→𝑈) |
| 133 | 42 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → 𝑉 ⊆ 𝑈) |
| 134 | | foimacnv 6154 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ 𝑡):𝑡–onto→𝑈 ∧ 𝑉 ⊆ 𝑈) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) |
| 135 | 132, 133,
134 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (◡(𝐹 ↾ 𝑡) “ 𝑉)) = 𝑉) |
| 136 | 126, 135 | syl5eq 2668 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))) = 𝑉) |
| 137 | 136 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = ((𝐽 ↾t 𝑈) ↾t 𝑉)) |
| 138 | | cvmtop2 31243 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) |
| 139 | 3, 138 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝐽 ∈ Top) |
| 140 | 7 | cvmsrcl 31246 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) |
| 141 | 140 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → 𝑈 ∈ 𝐽) |
| 142 | | restabs 20969 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑉 ⊆ 𝑈 ∧ 𝑈 ∈ 𝐽) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
| 143 | 139, 42, 141, 142 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
| 144 | 143 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t 𝑉) = (𝐽 ↾t 𝑉)) |
| 145 | 137, 144 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → ((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉)))) = (𝐽 ↾t 𝑉)) |
| 146 | 122, 145 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (((𝐶 ↾t 𝑡) ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo((𝐽 ↾t 𝑈) ↾t ((𝐹 ↾ 𝑡) “ (𝑡 ∩ (◡𝐹 “ 𝑉))))) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
| 147 | 118, 146 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
| 148 | 101, 147 | jca 554 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) ∧ 𝑡 ∈ 𝑥) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
| 149 | 148 | ralrimiva 2966 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
| 150 | 56 | rgenw 2924 |
. . . . . . . . 9
⊢
∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V |
| 151 | 50 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (𝑡 ∈ 𝑥 ↦ (𝑡 ∩ (◡𝐹 “ 𝑉))) |
| 152 | | sneq 4187 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → {𝑤} = {(𝑡 ∩ (◡𝐹 “ 𝑉))}) |
| 153 | 152 | difeq2d 3728 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤}) = (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})) |
| 154 | | ineq1 3807 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝑤 ∩ 𝑧) = ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧)) |
| 155 | 154 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝑤 ∩ 𝑧) = ∅ ↔ ((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
| 156 | 153, 155 | raleqbidv 3152 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ↔ ∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅)) |
| 157 | | reseq2 5391 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 158 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → (𝐶 ↾t 𝑤) = (𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))) |
| 159 | 158 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) = ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))) |
| 160 | 157, 159 | eleq12d 2695 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)) ↔ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
| 161 | 156, 160 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑡 ∩ (◡𝐹 “ 𝑉)) → ((∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) |
| 162 | 151, 161 | ralrnmpt 6368 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
𝑥 (𝑡 ∩ (◡𝐹 “ 𝑉)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉))))) |
| 163 | 150, 162 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))) ↔ ∀𝑡 ∈ 𝑥 (∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {(𝑡 ∩ (◡𝐹 “ 𝑉))})((𝑡 ∩ (◡𝐹 “ 𝑉)) ∩ 𝑧) = ∅ ∧ (𝐹 ↾ (𝑡 ∩ (◡𝐹 “ 𝑉))) ∈ ((𝐶 ↾t (𝑡 ∩ (◡𝐹 “ 𝑉)))Homeo(𝐽 ↾t 𝑉)))) |
| 164 | 149, 163 | sylibr 224 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉)))) |
| 165 | 73, 164 | jca 554 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (∪ ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))) |
| 166 | 7 | cvmscbv 31240 |
. . . . . . . 8
⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 =
(◡𝐹 “ 𝑎) ∧ ∀𝑤 ∈ 𝑏 (∀𝑧 ∈ (𝑏 ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑎))))}) |
| 167 | 166 | cvmsval 31248 |
. . . . . . 7
⊢ (𝐶 ∈ Top → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) |
| 168 | 5, 167 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) ↔ (𝑉 ∈ 𝐽 ∧ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ⊆ 𝐶 ∧ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ≠ ∅) ∧ (∪ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) = (◡𝐹 “ 𝑉) ∧ ∀𝑤 ∈ ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉)))(∀𝑧 ∈ (ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∖ {𝑤})(𝑤 ∩ 𝑧) = ∅ ∧ (𝐹 ↾ 𝑤) ∈ ((𝐶 ↾t 𝑤)Homeo(𝐽 ↾t 𝑉))))))) |
| 169 | 2, 32, 165, 168 | mpbir3and 1245 |
. . . . 5
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → ran (𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉)) |
| 170 | | ne0i 3921 |
. . . . 5
⊢ (ran
(𝑦 ∈ 𝑥 ↦ (𝑦 ∩ (◡𝐹 “ 𝑉))) ∈ (𝑆‘𝑉) → (𝑆‘𝑉) ≠ ∅) |
| 171 | 169, 170 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑥 ∈ (𝑆‘𝑈)) → (𝑆‘𝑉) ≠ ∅) |
| 172 | 171 | ex 450 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) |
| 173 | 172 | exlimdv 1861 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → (∃𝑥 𝑥 ∈ (𝑆‘𝑈) → (𝑆‘𝑉) ≠ ∅)) |
| 174 | 1, 173 | syl5bi 232 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) |