HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodsi Structured version   Visualization version   GIF version

Theorem hodsi 28634
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hodsi ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)

Proof of Theorem hodsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
21ffvelrni 6358 . . . . 5 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
3 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
43ffvelrni 6358 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
5 hods.3 . . . . . 6 𝑇: ℋ⟶ ℋ
65ffvelrni 6358 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubadd 27934 . . . . 5 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
82, 4, 6, 7syl3anc 1326 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
9 hodval 28601 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
101, 3, 9mp3an12 1414 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
1110eqeq1d 2624 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥)))
12 hosval 28599 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
133, 5, 12mp3an12 1414 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1413eqeq1d 2624 . . . 4 (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
158, 11, 143bitr4d 300 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥)))
1615ralbiia 2979 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥))
171, 3hosubcli 28628 . . 3 (𝑅op 𝑆): ℋ⟶ ℋ
1817, 5hoeqi 28620 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ (𝑅op 𝑆) = 𝑇)
193, 5hoaddcli 28627 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
2019, 1hoeqi 28620 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ (𝑆 +op 𝑇) = 𝑅)
2116, 18, 203bitr3i 290 1 ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  wral 2912  wf 5884  cfv 5888  (class class class)co 6650  chil 27776   + cva 27777   cmv 27782   +op chos 27795  op chod 27797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828  df-hosum 28589  df-hodif 28591
This theorem is referenced by:  hodidi  28646  hodseqi  28653  ho0subi  28654  hosd1i  28681  pjoci  29039
  Copyright terms: Public domain W3C validator