| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∪
𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
| 2 | | simplr1 1103 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) |
| 3 | | n0 3931 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵)) |
| 4 | | inss2 3834 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ⊆ ∪ 𝑘 ∈ 𝐴 𝐵 |
| 5 | 4 | sseli 3599 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝑣 ∈ ∪
𝑘 ∈ 𝐴 𝐵) |
| 6 | | eliun 4524 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃𝑘 ∈ 𝐴 𝑣 ∈ 𝐵) |
| 7 | | rexn0 4074 |
. . . . . . . . . . . . . 14
⊢
(∃𝑘 ∈
𝐴 𝑣 ∈ 𝐵 → 𝐴 ≠ ∅) |
| 8 | 6, 7 | sylbi 207 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 → 𝐴 ≠ ∅) |
| 9 | 5, 8 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝐴 ≠ ∅) |
| 10 | 9 | exlimiv 1858 |
. . . . . . . . . . 11
⊢
(∃𝑣 𝑣 ∈ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) → 𝐴 ≠ ∅) |
| 11 | 3, 10 | sylbi 207 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ → 𝐴 ≠ ∅) |
| 12 | 2, 11 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝐴 ≠ ∅) |
| 13 | | simplll 798 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝜑) |
| 14 | | iunconn.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| 15 | 14 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
| 16 | 13, 15 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
| 17 | | r19.2z 4060 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) → ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
| 18 | 12, 16, 17 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
| 19 | | eliun 4524 |
. . . . . . . 8
⊢ (𝑃 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃𝑘 ∈ 𝐴 𝑃 ∈ 𝐵) |
| 20 | 18, 19 | sylibr 224 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑃 ∈ ∪
𝑘 ∈ 𝐴 𝐵) |
| 21 | 1, 20 | sseldd 3604 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑃 ∈ (𝑢 ∪ 𝑣)) |
| 22 | | elun 3753 |
. . . . . 6
⊢ (𝑃 ∈ (𝑢 ∪ 𝑣) ↔ (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
| 23 | 21, 22 | sylib 208 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
| 24 | | iunconn.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 25 | 13, 24 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 26 | | iunconn.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
| 27 | 13, 26 | sylan 488 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) |
| 28 | 13, 14 | sylan 488 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| 29 | | iunconn.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
| 30 | 13, 29 | sylan 488 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) |
| 31 | | simpllr 799 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) |
| 32 | 31 | simpld 475 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑢 ∈ 𝐽) |
| 33 | 31 | simprd 479 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → 𝑣 ∈ 𝐽) |
| 34 | | simplr2 1104 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) |
| 35 | | simplr3 1105 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
| 36 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) |
| 37 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑢 |
| 38 | | nfiu1 4550 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 |
| 39 | 37, 38 | nfin 3820 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) |
| 40 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘∅ |
| 41 | 39, 40 | nfne 2894 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ |
| 42 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑣 |
| 43 | 42, 38 | nfin 3820 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) |
| 44 | 43, 40 | nfne 2894 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑣 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ |
| 45 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑢 ∩ 𝑣) |
| 46 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑋 |
| 47 | 46, 38 | nfdif 3731 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵) |
| 48 | 45, 47 | nfss 3596 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵) |
| 49 | 41, 44, 48 | nf3an 1831 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝑢 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
| 50 | 36, 49 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) |
| 51 | 37, 42 | nfun 3769 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑢 ∪ 𝑣) |
| 52 | 38, 51 | nfss 3596 |
. . . . . . . 8
⊢
Ⅎ𝑘∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣) |
| 53 | 50, 52 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑘(((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
| 54 | 25, 27, 28, 30, 32, 33, 34, 35, 1, 53 | iunconnlem 21230 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ 𝑃 ∈ 𝑢) |
| 55 | | incom 3805 |
. . . . . . . 8
⊢ (𝑣 ∩ 𝑢) = (𝑢 ∩ 𝑣) |
| 56 | 55, 35 | syl5eqss 3649 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → (𝑣 ∩ 𝑢) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) |
| 57 | | uncom 3757 |
. . . . . . . 8
⊢ (𝑢 ∪ 𝑣) = (𝑣 ∪ 𝑢) |
| 58 | 1, 57 | syl6sseq 3651 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ∪
𝑘 ∈ 𝐴 𝐵 ⊆ (𝑣 ∪ 𝑢)) |
| 59 | 25, 27, 28, 30, 33, 32, 2, 56, 58, 53 | iunconnlem 21230 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ 𝑃 ∈ 𝑣) |
| 60 | | ioran 511 |
. . . . . 6
⊢ (¬
(𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣) ↔ (¬ 𝑃 ∈ 𝑢 ∧ ¬ 𝑃 ∈ 𝑣)) |
| 61 | 54, 59, 60 | sylanbrc 698 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) → ¬ (𝑃 ∈ 𝑢 ∨ 𝑃 ∈ 𝑣)) |
| 62 | 23, 61 | pm2.65da 600 |
. . . 4
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) ∧ ((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵))) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)) |
| 63 | 62 | ex 450 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽)) → (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) |
| 64 | 63 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) |
| 65 | 26 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
| 66 | | iunss 4561 |
. . . 4
⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋 ↔ ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
| 67 | 65, 66 | sylibr 224 |
. . 3
⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) |
| 68 | | connsub 21224 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝑋) → ((𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)))) |
| 69 | 24, 67, 68 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐽 (((𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪
𝑘 ∈ 𝐴 𝐵)) → ¬ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣)))) |
| 70 | 64, 69 | mpbird 247 |
1
⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |