| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 2921 |
. . 3
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹)} |
| 2 | | psrbag.d |
. . . . . . . . 9
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 3 | 2 | psrbag 19364 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (◡𝑦 “ ℕ) ∈
Fin))) |
| 4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑦 ∈ 𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (◡𝑦 “ ℕ) ∈
Fin))) |
| 5 | | simpl 473 |
. . . . . . 7
⊢ ((𝑦:𝐼⟶ℕ0 ∧ (◡𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0) |
| 6 | 4, 5 | syl6bi 243 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0)) |
| 7 | 6 | adantrd 484 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹) → 𝑦:𝐼⟶ℕ0)) |
| 8 | | ss2ixp 7921 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ ℕ0 → X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ℕ0) |
| 9 | | fz0ssnn0 12435 |
. . . . . . . . . 10
⊢
(0...(𝐹‘𝑥)) ⊆
ℕ0 |
| 10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → (0...(𝐹‘𝑥)) ⊆
ℕ0) |
| 11 | 8, 10 | mprg 2926 |
. . . . . . . 8
⊢ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ℕ0 |
| 12 | 11 | sseli 3599 |
. . . . . . 7
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) → 𝑦 ∈ X𝑥 ∈ 𝐼 ℕ0) |
| 13 | | vex 3203 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 14 | 13 | elixpconst 7916 |
. . . . . . 7
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 ℕ0
↔ 𝑦:𝐼⟶ℕ0) |
| 15 | 12, 14 | sylib 208 |
. . . . . 6
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) → 𝑦:𝐼⟶ℕ0) |
| 16 | 15 | a1i 11 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) → 𝑦:𝐼⟶ℕ0)) |
| 17 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑦:𝐼⟶ℕ0 → 𝑦 Fn 𝐼) |
| 18 | 17 | adantl 482 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼) |
| 19 | 13 | elixp 7915 |
. . . . . . . . 9
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 20 | 19 | baib 944 |
. . . . . . . 8
⊢ (𝑦 Fn 𝐼 → (𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 21 | 18, 20 | syl 17 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∈ X𝑥 ∈
𝐼 (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)))) |
| 22 | | ffvelrn 6357 |
. . . . . . . . . . . 12
⊢ ((𝑦:𝐼⟶ℕ0 ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
| 23 | 22 | adantll 750 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
| 24 | | nn0uz 11722 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 25 | 23, 24 | syl6eleq 2711 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
(ℤ≥‘0)) |
| 26 | 2 | psrbagf 19365 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
| 27 | 26 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0) |
| 28 | 27 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) |
| 29 | 28 | nn0zd 11480 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℤ) |
| 30 | | elfz5 12334 |
. . . . . . . . . 10
⊢ (((𝑦‘𝑥) ∈ (ℤ≥‘0)
∧ (𝐹‘𝑥) ∈ ℤ) → ((𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 31 | 25, 29, 30 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 32 | 31 | ralbidva 2985 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) →
(∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 33 | 27 | ffnd 6046 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼) |
| 34 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼 ∈ 𝑉) |
| 35 | | inidm 3822 |
. . . . . . . . 9
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 36 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) = (𝑦‘𝑥)) |
| 37 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 38 | 18, 33, 34, 34, 35, 36, 37 | ofrfval 6905 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘𝑟
≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ≤ (𝐹‘𝑥))) |
| 39 | 32, 38 | bitr4d 271 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) →
(∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (0...(𝐹‘𝑥)) ↔ 𝑦 ∘𝑟 ≤ 𝐹)) |
| 40 | 2 | psrbaglecl 19369 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝑦:𝐼⟶ℕ0 ∧ 𝑦 ∘𝑟
≤ 𝐹)) → 𝑦 ∈ 𝐷) |
| 41 | 40 | 3exp2 1285 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦 ∘𝑟
≤ 𝐹 → 𝑦 ∈ 𝐷)))) |
| 42 | 41 | imp31 448 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘𝑟
≤ 𝐹 → 𝑦 ∈ 𝐷)) |
| 43 | 42 | pm4.71rd 667 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦 ∘𝑟
≤ 𝐹 ↔ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹))) |
| 44 | 21, 39, 43 | 3bitrrd 295 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)))) |
| 45 | 44 | ex 450 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥))))) |
| 46 | 7, 16, 45 | pm5.21ndd 369 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹) ↔ 𝑦 ∈ X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)))) |
| 47 | 46 | abbi1dv 2743 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∘𝑟 ≤ 𝐹)} = X𝑥 ∈
𝐼 (0...(𝐹‘𝑥))) |
| 48 | 1, 47 | syl5eq 2668 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} = X𝑥 ∈
𝐼 (0...(𝐹‘𝑥))) |
| 49 | | simpr 477 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐷) |
| 50 | | cnveq 5296 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
| 51 | 50 | imaeq1d 5465 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) |
| 52 | 51 | eleq1d 2686 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈
Fin)) |
| 53 | 52, 2 | elrab2 3366 |
. . . . 5
⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0
↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
| 54 | 49, 53 | sylib 208 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝐹 ∈ (ℕ0
↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
| 55 | 54 | simprd 479 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (◡𝐹 “ ℕ) ∈
Fin) |
| 56 | | fzfid 12772 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (0...(𝐹‘𝑥)) ∈ Fin) |
| 57 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 58 | 57, 26 | jca 554 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0)) |
| 59 | | frnnn0supp 11349 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
| 60 | | eqimss 3657 |
. . . . . . . 8
⊢ ((𝐹 supp 0) = (◡𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
| 61 | 58, 59, 60 | 3syl 18 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
| 62 | | c0ex 10034 |
. . . . . . . 8
⊢ 0 ∈
V |
| 63 | 62 | a1i 11 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 0 ∈ V) |
| 64 | 26, 61, 57, 63 | suppssr 7326 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐹‘𝑥) = 0) |
| 65 | 64 | oveq2d 6666 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) = (0...0)) |
| 66 | | fz0sn 12439 |
. . . . 5
⊢ (0...0) =
{0} |
| 67 | 65, 66 | syl6eq 2672 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) = {0}) |
| 68 | | eqimss 3657 |
. . . 4
⊢
((0...(𝐹‘𝑥)) = {0} → (0...(𝐹‘𝑥)) ⊆ {0}) |
| 69 | 67, 68 | syl 17 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (0...(𝐹‘𝑥)) ⊆ {0}) |
| 70 | 55, 56, 69 | ixpfi2 8264 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → X𝑥 ∈ 𝐼 (0...(𝐹‘𝑥)) ∈ Fin) |
| 71 | 48, 70 | eqeltrd 2701 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝐹} ∈ Fin) |