![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel5a | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
Ref | Expression |
---|---|
lspsnel5a.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5a.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5a.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5a.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lspsnel5a | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | eqid 2622 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lspsnel5a.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5a.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5a.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3 | lssel 18938 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
8 | 6, 1, 7 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
9 | 2, 3, 4, 5, 6, 8 | lspsnel5 18995 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
10 | 1, 9 | mpbid 222 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 {csn 4177 ‘cfv 5888 Basecbs 15857 LModclmod 18863 LSubSpclss 18932 LSpanclspn 18971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-lmod 18865 df-lss 18933 df-lsp 18972 |
This theorem is referenced by: lssats2 19000 lspsn 19002 lspsnvsi 19004 lsmelval2 19085 lspprabs 19095 lspvadd 19096 lspabs3 19121 lsmcv 19141 lspsnat 19145 lsppratlem6 19152 issubassa2 19345 lshpnel 34270 lsatel 34292 lsmsat 34295 lssatomic 34298 lssats 34299 lsat0cv 34320 dia2dimlem10 36362 dochsatshpb 36741 lclkrlem2f 36801 lcfrlem25 36856 lcfrlem35 36866 mapdval2N 36919 mapdrvallem2 36934 mapdpglem8 36968 mapdpglem13 36973 mapdindp0 37008 mapdh6aN 37024 mapdh8e 37073 mapdh9a 37079 hdmap1l6a 37099 hdmapval0 37125 hdmapval3lemN 37129 hdmap10lem 37131 hdmap11lem1 37133 hdmap11lem2 37134 hdmaprnlem4N 37145 hdmaprnlem3eN 37150 |
Copyright terms: Public domain | W3C validator |