Proof of Theorem mapdval2N
| Step | Hyp | Ref
| Expression |
| 1 | | mapdval2.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | mapdval2.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | mapdval2.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
| 4 | | mapdval2.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑈) |
| 5 | | mapdval2.l |
. . 3
⊢ 𝐿 = (LKer‘𝑈) |
| 6 | | mapdval2.o |
. . 3
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| 7 | | mapdval2.m |
. . 3
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 8 | | mapdval2.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 9 | | mapdval2.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 10 | | mapdval2.c |
. . 3
⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mapdvalc 36918 |
. 2
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇}) |
| 12 | 1, 2, 8 | dvhlmod 36399 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 13 | 12 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → 𝑈 ∈ LMod) |
| 14 | | simplr 792 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) |
| 15 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 16 | | mapdval2.n |
. . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑈) |
| 17 | | eqid 2622 |
. . . . . . . . 9
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
| 18 | 15, 16, 17 | islsati 34281 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) → ∃𝑣 ∈ (Base‘𝑈)(𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 19 | 13, 14, 18 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → ∃𝑣 ∈ (Base‘𝑈)(𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 20 | | simprr 796 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 21 | | simplr 792 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) |
| 22 | 20, 21 | eqsstr3d 3640 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → (𝑁‘{𝑣}) ⊆ 𝑇) |
| 23 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑈 ∈ LMod) |
| 24 | 23 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → 𝑈 ∈ LMod) |
| 25 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑇 ∈ 𝑆) |
| 26 | 25 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → 𝑇 ∈ 𝑆) |
| 27 | | simprl 794 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → 𝑣 ∈ (Base‘𝑈)) |
| 28 | 15, 3, 16, 24, 26, 27 | lspsnel5 18995 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → (𝑣 ∈ 𝑇 ↔ (𝑁‘{𝑣}) ⊆ 𝑇)) |
| 29 | 22, 28 | mpbird 247 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → 𝑣 ∈ 𝑇) |
| 30 | 29, 20 | jca 554 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) ∧ (𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) → (𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 31 | 30 | ex 450 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → ((𝑣 ∈ (Base‘𝑈) ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → (𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})))) |
| 32 | 31 | reximdv2 3014 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → (∃𝑣 ∈ (Base‘𝑈)(𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}) → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 33 | 19, 32 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 34 | 33 | ex 450 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈)) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑇 → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 35 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 36 | 35, 3 | lss0cl 18947 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝑇 ∈ 𝑆) → (0g‘𝑈) ∈ 𝑇) |
| 37 | 12, 9, 36 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑈) ∈ 𝑇) |
| 38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → (0g‘𝑈) ∈ 𝑇) |
| 39 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) |
| 40 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → 𝑈 ∈ LMod) |
| 41 | 35, 16 | lspsn0 19008 |
. . . . . . . . . 10
⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) =
{(0g‘𝑈)}) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → (𝑁‘{(0g‘𝑈)}) =
{(0g‘𝑈)}) |
| 43 | 39, 42 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → (𝑂‘(𝐿‘𝑓)) = (𝑁‘{(0g‘𝑈)})) |
| 44 | | sneq 4187 |
. . . . . . . . . . 11
⊢ (𝑣 = (0g‘𝑈) → {𝑣} = {(0g‘𝑈)}) |
| 45 | 44 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑣 = (0g‘𝑈) → (𝑁‘{𝑣}) = (𝑁‘{(0g‘𝑈)})) |
| 46 | 45 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑣 = (0g‘𝑈) → ((𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}) ↔ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{(0g‘𝑈)}))) |
| 47 | 46 | rspcev 3309 |
. . . . . . . 8
⊢
(((0g‘𝑈) ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{(0g‘𝑈)})) → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 48 | 38, 43, 47 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 49 | 48 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 50 | 49 | a1d 25 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)}) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑇 → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 51 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 52 | 10 | lcfl1lem 36780 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐶 ↔ (𝑓 ∈ 𝐹 ∧ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
| 53 | 52 | simplbi 476 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐶 → 𝑓 ∈ 𝐹) |
| 54 | 53 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → 𝑓 ∈ 𝐹) |
| 55 | 1, 6, 2, 35, 17, 4, 5, 51, 54 | dochsat0 36746 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ((𝑂‘(𝐿‘𝑓)) ∈ (LSAtoms‘𝑈) ∨ (𝑂‘(𝐿‘𝑓)) = {(0g‘𝑈)})) |
| 56 | 34, 50, 55 | mpjaodan 827 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑇 → ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 57 | | simp3 1063 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) |
| 58 | 23 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → 𝑈 ∈ LMod) |
| 59 | 25 | 3ad2ant1 1082 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → 𝑇 ∈ 𝑆) |
| 60 | | simp2 1062 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → 𝑣 ∈ 𝑇) |
| 61 | 3, 16, 58, 59, 60 | lspsnel5a 18996 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → (𝑁‘{𝑣}) ⊆ 𝑇) |
| 62 | 57, 61 | eqsstrd 3639 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ 𝐶) ∧ 𝑣 ∈ 𝑇 ∧ (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇) |
| 63 | 62 | rexlimdv3a 3033 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → (∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}) → (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇)) |
| 64 | 56, 63 | impbid 202 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐶) → ((𝑂‘(𝐿‘𝑓)) ⊆ 𝑇 ↔ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣}))) |
| 65 | 64 | rabbidva 3188 |
. 2
⊢ (𝜑 → {𝑓 ∈ 𝐶 ∣ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑇} = {𝑓 ∈ 𝐶 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})}) |
| 66 | 11, 65 | eqtrd 2656 |
1
⊢ (𝜑 → (𝑀‘𝑇) = {𝑓 ∈ 𝐶 ∣ ∃𝑣 ∈ 𝑇 (𝑂‘(𝐿‘𝑓)) = (𝑁‘{𝑣})}) |