MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnat Structured version   Visualization version   GIF version

Theorem lspsnat 19145
Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 28440 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
lspsnat.v 𝑉 = (Base‘𝑊)
lspsnat.z 0 = (0g𝑊)
lspsnat.s 𝑆 = (LSubSp‘𝑊)
lspsnat.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnat (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))

Proof of Theorem lspsnat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . . . 6 ((𝑈 ∖ { 0 }) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }))
2 simprl 794 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 ⊆ (𝑁‘{𝑋}))
3 lspsnat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
4 lspsnat.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
5 simpl1 1064 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LVec)
6 lveclmod 19106 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑊 ∈ LMod)
8 simpl2 1065 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈𝑆)
9 simprr 796 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
109eldifad 3586 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥𝑈)
113, 4, 7, 8, 10lspsnel5a 18996 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑥}) ⊆ 𝑈)
12 0ss 3972 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑉
1312a1i 11 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ∅ ⊆ 𝑉)
14 simpl3 1066 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑉)
15 ssdif 3745 . . . . . . . . . . . . . . . 16 (𝑈 ⊆ (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1615ad2antrl 764 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑈 ∖ { 0 }) ⊆ ((𝑁‘{𝑋}) ∖ { 0 }))
1716, 9sseldd 3604 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘{𝑋}) ∖ { 0 }))
18 uncom 3757 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑋}) = ({𝑋} ∪ ∅)
19 un0 3967 . . . . . . . . . . . . . . . . . 18 ({𝑋} ∪ ∅) = {𝑋}
2018, 19eqtri 2644 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑋}) = {𝑋}
2120fveq2i 6194 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋})
2221a1i 11 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘(∅ ∪ {𝑋})) = (𝑁‘{𝑋}))
23 lspsnat.z . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
2423, 4lsp0 19009 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
257, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘∅) = { 0 })
2622, 25difeq12d 3729 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)) = ((𝑁‘{𝑋}) ∖ { 0 }))
2717, 26eleqtrrd 2704 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))
28 lspsnat.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
2928, 3, 4lspsolv 19143 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑋})) ∖ (𝑁‘∅)))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
305, 13, 14, 27, 29syl13anc 1328 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘(∅ ∪ {𝑥})))
31 uncom 3757 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
32 un0 3967 . . . . . . . . . . . . . 14 ({𝑥} ∪ ∅) = {𝑥}
3331, 32eqtri 2644 . . . . . . . . . . . . 13 (∅ ∪ {𝑥}) = {𝑥}
3433fveq2i 6194 . . . . . . . . . . . 12 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
3530, 34syl6eleq 2711 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋 ∈ (𝑁‘{𝑥}))
3611, 35sseldd 3604 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑋𝑈)
373, 4, 7, 8, 36lspsnel5a 18996 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → (𝑁‘{𝑋}) ⊆ 𝑈)
382, 37eqssd 3620 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ (𝑈 ⊆ (𝑁‘{𝑋}) ∧ 𝑥 ∈ (𝑈 ∖ { 0 }))) → 𝑈 = (𝑁‘{𝑋}))
3938expr 643 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
4039exlimdv 1861 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (∃𝑥 𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑋})))
411, 40syl5bi 232 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → ((𝑈 ∖ { 0 }) ≠ ∅ → 𝑈 = (𝑁‘{𝑋})))
4241necon1bd 2812 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → (𝑈 ∖ { 0 }) = ∅))
43 ssdif0 3942 . . . 4 (𝑈 ⊆ { 0 } ↔ (𝑈 ∖ { 0 }) = ∅)
4442, 43syl6ibr 242 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 ⊆ { 0 }))
45 simpl1 1064 . . . . 5 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
4645, 6syl 17 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LMod)
47 simpl2 1065 . . . 4 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → 𝑈𝑆)
4823, 3lssle0 18950 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
4946, 47, 48syl2anc 693 . . 3 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 ⊆ { 0 } ↔ 𝑈 = { 0 }))
5044, 49sylibd 229 . 2 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (¬ 𝑈 = (𝑁‘{𝑋}) → 𝑈 = { 0 }))
5150orrd 393 1 (((𝑊 ∈ LVec ∧ 𝑈𝑆𝑋𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  cfv 5888  Basecbs 15857  0gc0g 16100  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lspsncv0  19146  lsatcmp  34290  dihlspsnssN  36621  dihlspsnat  36622
  Copyright terms: Public domain W3C validator