| Step | Hyp | Ref
| Expression |
| 1 | | mapdh8a.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | mapdh8a.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | mapdh8a.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
| 4 | | mapdh8a.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
| 5 | | mapdh8a.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | | mapdh8e.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 7 | 6 | eldifad 3586 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 8 | | mapdh8e.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 9 | 8 | eldifad 3586 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | dvh3dim 36735 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 11 | | mapdh8a.s |
. . . 4
⊢ − =
(-g‘𝑈) |
| 12 | | mapdh8a.o |
. . . 4
⊢ 0 =
(0g‘𝑈) |
| 13 | | mapdh8a.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 14 | | mapdh8a.d |
. . . 4
⊢ 𝐷 = (Base‘𝐶) |
| 15 | | mapdh8a.r |
. . . 4
⊢ 𝑅 = (-g‘𝐶) |
| 16 | | mapdh8a.q |
. . . 4
⊢ 𝑄 = (0g‘𝐶) |
| 17 | | mapdh8a.j |
. . . 4
⊢ 𝐽 = (LSpan‘𝐶) |
| 18 | | mapdh8a.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 19 | | mapdh8a.i |
. . . 4
⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd
‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) |
| 20 | 5 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 21 | | mapdh8e.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 22 | 21 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹 ∈ 𝐷) |
| 23 | | mapdh8e.mn |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 24 | 23 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 25 | | mapdh8e.eg |
. . . . 5
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| 26 | 25 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| 27 | 6 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 28 | 8 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 29 | | mapdh8e.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 30 | 29 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 31 | | mapdh8e.yt |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 32 | 31 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 33 | | eqid 2622 |
. . . . 5
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 34 | 1, 2, 5 | dvhlmod 36399 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 35 | 34 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
| 36 | 3, 33, 4, 34, 7, 9 | lspprcl 18978 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 37 | 36 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 38 | | simp2 1062 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ 𝑉) |
| 39 | | simp3 1063 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 40 | 3, 12, 33, 35, 37, 38, 39 | lssneln0 18952 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 41 | 1, 2, 5 | dvhlvec 36398 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 42 | 29 | eldifad 3586 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 43 | | mapdh8e.xy |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 44 | | mapdh8e.e |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
| 45 | | prcom 4267 |
. . . . . . . . . . 11
⊢ {𝑌, 𝑇} = {𝑇, 𝑌} |
| 46 | 45 | fveq2i 6194 |
. . . . . . . . . 10
⊢ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌}) |
| 47 | 44, 46 | syl6eleq 2711 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑇, 𝑌})) |
| 48 | 3, 12, 4, 41, 6, 42, 9, 43, 47 | lspexch 19129 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝑋, 𝑌})) |
| 49 | 33, 4, 34, 36, 48 | lspsnel5a 18996 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 50 | 49 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 51 | 34 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑈 ∈ LMod) |
| 52 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 53 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ∈ 𝑉) |
| 54 | 3, 33, 4, 51, 52, 53 | lspsnel5 18995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 55 | 54 | biimprd 238 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 56 | 55 | con3d 148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 57 | 56 | 3impia 1261 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 58 | | nssne2 3662 |
. . . . . 6
⊢ (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) |
| 59 | 50, 57, 58 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) |
| 60 | 59 | necomd 2849 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
| 61 | | mapdh8e.xt |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| 62 | 61 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| 63 | 41 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec) |
| 64 | 7 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ 𝑉) |
| 65 | 9 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ 𝑉) |
| 66 | 3, 4, 63, 38, 64, 65, 39 | lspindpi 19132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 67 | 66 | simprd 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 68 | 67 | necomd 2849 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| 69 | 43 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 70 | 3, 12, 4, 63, 27, 65, 38, 69, 39 | lspindp2l 19134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))) |
| 71 | 70 | simprd 479 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| 72 | 1, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71 | mapdh8d 37072 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| 73 | 72 | rexlimdv3a 3033 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉))) |
| 74 | 10, 73 | mpd 15 |
1
⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |