Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6a Structured version   Visualization version   GIF version

Theorem hdmap1l6a 37099
Description: Lemma for hdmap1l6 37111. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6a (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6a
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . . 4 + = (+g𝑈)
5 hdmap1l6.s . . . 4 = (-g𝑈)
6 hdmap1l6c.o . . . 4 0 = (0g𝑈)
7 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . . 4 = (+g𝐶)
11 hdmap1l6.r . . . 4 𝑅 = (-g𝐶)
12 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
13 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 hdmap1l6e.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
22 hdmap1l6e.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
23 hdmap1l6.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
24 hdmap1l6.fg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
25 hdmap1l6.fe . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem2 37098 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))
2724, 25oveq12d 6668 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐺 𝐸))
2827sneqd 4189 . . . 4 (𝜑 → {((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))} = {(𝐺 𝐸)})
2928fveq2d 6195 . . 3 (𝜑 → (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) = (𝐿‘{(𝐺 𝐸)}))
3026, 29eqtr4d 2659 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem1 37097 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3227oveq2d 6666 . . . . 5 (𝜑 → (𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) = (𝐹𝑅(𝐺 𝐸)))
3332sneqd 4189 . . . 4 (𝜑 → {(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))} = {(𝐹𝑅(𝐺 𝐸))})
3433fveq2d 6195 . . 3 (𝜑 → (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3531, 34eqtr4d 2659 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))
361, 2, 16dvhlmod 36399 . . . . 5 (𝜑𝑈 ∈ LMod)
3720eldifad 3586 . . . . 5 (𝜑𝑌𝑉)
3821eldifad 3586 . . . . 5 (𝜑𝑍𝑉)
393, 4lmodvacl 18877 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4036, 37, 38, 39syl3anc 1326 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
413, 4, 6, 7, 36, 37, 38, 23lmodindp1 19014 . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
42 eldifsn 4317 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4340, 41, 42sylanbrc 698 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
441, 8, 16lcdlmod 36881 . . . 4 (𝜑𝐶 ∈ LMod)
451, 2, 16dvhlvec 36398 . . . . . . 7 (𝜑𝑈 ∈ LVec)
4618eldifad 3586 . . . . . . 7 (𝜑𝑋𝑉)
473, 6, 7, 45, 37, 21, 46, 23, 22lspindp2 19135 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
4847simpld 475 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37hdmap1cl 37094 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
503, 6, 7, 45, 20, 38, 46, 23, 22lspindp1 19133 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5150simpld 475 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
521, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38hdmap1cl 37094 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
539, 10lmodvacl 18877 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5444, 49, 52, 53syl3anc 1326 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
55 eqid 2622 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
563, 55, 7, 36, 37, 38lspprcl 18978 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
573, 4, 7, 36, 37, 38lspprvacl 18999 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍}))
5855, 7, 36, 56, 57lspsnel5a 18996 . . . . 5 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}))
593, 55, 7, 36, 56, 46lspsnel5 18995 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
6022, 59mtbid 314 . . . . 5 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))
61 nssne2 3662 . . . . 5 (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6258, 60, 61syl2anc 693 . . . 4 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6362necomd 2849 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
641, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19hdmap1eq 37091 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) ∧ (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))))
6530, 35, 64mpbir2and 957 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cotp 4185  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  -gcsg 17424  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914  df-hdmap1 37083
This theorem is referenced by:  hdmap1l6d  37103  hdmap1l6e  37104  hdmap1l6f  37105  hdmap1l6j  37109
  Copyright terms: Public domain W3C validator