MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssid Structured version   Visualization version   GIF version

Theorem lspssid 18985
Description: A set of vectors is a subset of its span. (spanss2 28204 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssid ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))

Proof of Theorem lspssid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4495 . 2 𝑈 {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡}
2 lspss.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2622 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 lspss.n . . 3 𝑁 = (LSpan‘𝑊)
52, 3, 4lspval 18975 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
61, 5syl5sseqr 3654 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574   cint 4475  cfv 5888  Basecbs 15857  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspun  18987  lspsnid  18993  lsslsp  19015  lmhmlsp  19049  lsmsp  19086  lsmssspx  19088  lspvadd  19096  lspsolvlem  19142  lspsolv  19143  lsppratlem3  19149  lsppratlem4  19150  islbs3  19155  lbsextlem2  19159  lbsextlem4  19161  rspssid  19223  ocvlsp  20020  obselocv  20072  frlmsslsp  20135  lindff1  20159  islinds3  20173  lindsenlbs  33404  dochocsp  36668  djhunssN  36698  islssfg2  37641
  Copyright terms: Public domain W3C validator