| Step | Hyp | Ref
| Expression |
| 1 | | islbs2.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | islbs2.j |
. . . . 5
⊢ 𝐽 = (LBasis‘𝑊) |
| 3 | 1, 2 | lbsss 19077 |
. . . 4
⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| 4 | 3 | adantl 482 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑉) |
| 5 | | islbs2.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
| 6 | 1, 2, 5 | lbssp 19079 |
. . . 4
⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
| 7 | 6 | adantl 482 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝑁‘𝐵) = 𝑉) |
| 8 | | lveclmod 19106 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 9 | 8 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑊 ∈ LMod) |
| 10 | | pssss 3702 |
. . . . . . . . 9
⊢ (𝑠 ⊊ 𝐵 → 𝑠 ⊆ 𝐵) |
| 11 | 10, 3 | sylan9ssr 3617 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑠 ⊆ 𝑉) |
| 12 | 11 | 3adant1 1079 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → 𝑠 ⊆ 𝑉) |
| 13 | 1, 5 | lspssv 18983 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑠 ⊆ 𝑉) → (𝑁‘𝑠) ⊆ 𝑉) |
| 14 | 9, 12, 13 | syl2anc 693 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ⊆ 𝑉) |
| 15 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 16 | 15 | lvecdrng 19105 |
. . . . . . . . 9
⊢ (𝑊 ∈ LVec →
(Scalar‘𝑊) ∈
DivRing) |
| 17 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 18 | | eqid 2622 |
. . . . . . . . . 10
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
| 19 | 17, 18 | drngunz 18762 |
. . . . . . . . 9
⊢
((Scalar‘𝑊)
∈ DivRing → (1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) |
| 20 | 16, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec →
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) |
| 21 | 8, 20 | jca 554 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊)))) |
| 22 | 2, 5, 15, 18, 17, 1 | lbspss 19082 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧
(1r‘(Scalar‘𝑊)) ≠
(0g‘(Scalar‘𝑊))) ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ≠ 𝑉) |
| 23 | 21, 22 | syl3an1 1359 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ≠ 𝑉) |
| 24 | | df-pss 3590 |
. . . . . 6
⊢ ((𝑁‘𝑠) ⊊ 𝑉 ↔ ((𝑁‘𝑠) ⊆ 𝑉 ∧ (𝑁‘𝑠) ≠ 𝑉)) |
| 25 | 14, 23, 24 | sylanbrc 698 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑠 ⊊ 𝐵) → (𝑁‘𝑠) ⊊ 𝑉) |
| 26 | 25 | 3expia 1267 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) |
| 27 | 26 | alrimiv 1855 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) |
| 28 | 4, 7, 27 | 3jca 1242 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽) → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) |
| 29 | | simpr1 1067 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → 𝐵 ⊆ 𝑉) |
| 30 | | simpr2 1068 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → (𝑁‘𝐵) = 𝑉) |
| 31 | | simplr1 1103 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝐵 ⊆ 𝑉) |
| 32 | 31 | ssdifssd 3748 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉) |
| 33 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝑊)
∈ V |
| 34 | 1, 33 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
| 35 | | ssexg 4804 |
. . . . . . . 8
⊢ (((𝐵 ∖ {𝑥}) ⊆ 𝑉 ∧ 𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V) |
| 36 | 32, 34, 35 | sylancl 694 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ∈ V) |
| 37 | | simplr3 1105 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)) |
| 38 | | difssd 3738 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵) |
| 39 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 40 | | neldifsn 4321 |
. . . . . . . . . 10
⊢ ¬
𝑥 ∈ (𝐵 ∖ {𝑥}) |
| 41 | | nelne1 2890 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥})) |
| 42 | 39, 40, 41 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥})) |
| 43 | 42 | necomd 2849 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵) |
| 44 | | df-pss 3590 |
. . . . . . . 8
⊢ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵)) |
| 45 | 38, 43, 44 | sylanbrc 698 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵) |
| 46 | | psseq1 3694 |
. . . . . . . . 9
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠 ⊊ 𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵)) |
| 47 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁‘𝑠) = (𝑁‘(𝐵 ∖ {𝑥}))) |
| 48 | 47 | psseq1d 3699 |
. . . . . . . . 9
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁‘𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)) |
| 49 | 46, 48 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))) |
| 50 | 49 | spcgv 3293 |
. . . . . . 7
⊢ ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))) |
| 51 | 36, 37, 45, 50 | syl3c 66 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉) |
| 52 | | dfpss3 3693 |
. . . . . . 7
⊢ ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))) |
| 53 | 52 | simprbi 480 |
. . . . . 6
⊢ ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 54 | 51, 53 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 55 | | simplr2 1104 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘𝐵) = 𝑉) |
| 56 | 8 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod) |
| 57 | 32 | adantrr 753 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉) |
| 58 | | eqid 2622 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 59 | 1, 58, 5 | lspcl 18976 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
| 60 | 56, 57, 59 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
| 61 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝐵 ⊆ (𝐵 ∪ {𝑥}) |
| 62 | | undif1 4043 |
. . . . . . . . . 10
⊢ ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥}) |
| 63 | 61, 62 | sseqtr4i 3638 |
. . . . . . . . 9
⊢ 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥}) |
| 64 | 1, 5 | lspssid 18985 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 65 | 56, 57, 64 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 66 | | simprr 796 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 67 | 66 | snssd 4340 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 68 | 65, 67 | unssd 3789 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 69 | 63, 68 | syl5ss 3614 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 70 | 58, 5 | lspssp 18988 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁‘𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 71 | 56, 60, 69, 70 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 72 | 55, 71 | eqsstr3d 3640 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 73 | 72 | expr 643 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))) |
| 74 | 54, 73 | mtod 189 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 75 | 74 | ralrimiva 2966 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 76 | 1, 2, 5 | islbs2 19154 |
. . . 4
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 77 | 76 | adantr 481 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 78 | 29, 30, 75, 77 | mpbir3and 1245 |
. 2
⊢ ((𝑊 ∈ LVec ∧ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉))) → 𝐵 ∈ 𝐽) |
| 79 | 28, 78 | impbida 877 |
1
⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)))) |