MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Visualization version   GIF version

Theorem islbs3 19155
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs3 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Distinct variable groups:   𝐵,𝑠   𝑁,𝑠   𝑉,𝑠   𝑊,𝑠   𝐽,𝑠

Proof of Theorem islbs3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 19077 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 482 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 19079 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 482 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 19106 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
983ad2ant1 1082 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑊 ∈ LMod)
10 pssss 3702 . . . . . . . . 9 (𝑠𝐵𝑠𝐵)
1110, 3sylan9ssr 3617 . . . . . . . 8 ((𝐵𝐽𝑠𝐵) → 𝑠𝑉)
12113adant1 1079 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑠𝑉)
131, 5lspssv 18983 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
149, 12, 13syl2anc 693 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊆ 𝑉)
15 eqid 2622 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
1615lvecdrng 19105 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
17 eqid 2622 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
18 eqid 2622 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1917, 18drngunz 18762 . . . . . . . . 9 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2016, 19syl 17 . . . . . . . 8 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
218, 20jca 554 . . . . . . 7 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
222, 5, 15, 18, 17, 1lbspss 19082 . . . . . . 7 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
2321, 22syl3an1 1359 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
24 df-pss 3590 . . . . . 6 ((𝑁𝑠) ⊊ 𝑉 ↔ ((𝑁𝑠) ⊆ 𝑉 ∧ (𝑁𝑠) ≠ 𝑉))
2514, 23, 24sylanbrc 698 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊊ 𝑉)
26253expia 1267 . . . 4 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
2726alrimiv 1855 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
284, 7, 273jca 1242 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉)))
29 simpr1 1067 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝑉)
30 simpr2 1068 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝑁𝐵) = 𝑉)
31 simplr1 1103 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵𝑉)
3231ssdifssd 3748 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
33 fvex 6201 . . . . . . . . 9 (Base‘𝑊) ∈ V
341, 33eqeltri 2697 . . . . . . . 8 𝑉 ∈ V
35 ssexg 4804 . . . . . . . 8 (((𝐵 ∖ {𝑥}) ⊆ 𝑉𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V)
3632, 34, 35sylancl 694 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ∈ V)
37 simplr3 1105 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
38 difssd 3738 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵)
39 simpr 477 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝑥𝐵)
40 neldifsn 4321 . . . . . . . . . 10 ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})
41 nelne1 2890 . . . . . . . . . 10 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4239, 40, 41sylancl 694 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4342necomd 2849 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵)
44 df-pss 3590 . . . . . . . 8 ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵))
4538, 43, 44sylanbrc 698 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵)
46 psseq1 3694 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵))
47 fveq2 6191 . . . . . . . . . 10 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁𝑠) = (𝑁‘(𝐵 ∖ {𝑥})))
4847psseq1d 3699 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))
4946, 48imbi12d 334 . . . . . . . 8 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5049spcgv 3293 . . . . . . 7 ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5136, 37, 45, 50syl3c 66 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)
52 dfpss3 3693 . . . . . . 7 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
5352simprbi 480 . . . . . 6 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
5451, 53syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
55 simplr2 1104 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
568ad2antrr 762 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
5732adantrr 753 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
58 eqid 2622 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
591, 58, 5lspcl 18976 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
6056, 57, 59syl2anc 693 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
61 ssun1 3776 . . . . . . . . . 10 𝐵 ⊆ (𝐵 ∪ {𝑥})
62 undif1 4043 . . . . . . . . . 10 ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥})
6361, 62sseqtr4i 3638 . . . . . . . . 9 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥})
641, 5lspssid 18985 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6556, 57, 64syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
66 simprr 796 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
6766snssd 4340 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6865, 67unssd 3789 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6963, 68syl5ss 3614 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7058, 5lspssp 18988 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7156, 60, 69, 70syl3anc 1326 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7255, 71eqsstr3d 3640 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7372expr 643 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
7454, 73mtod 189 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
7574ralrimiva 2966 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
761, 2, 5islbs2 19154 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7776adantr 481 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7829, 30, 75, 77mpbir3and 1245 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝐽)
7928, 78impbida 877 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  wpss 3575  {csn 4177  cfv 5888  Basecbs 15857  Scalarcsca 15944  0gc0g 16100  1rcur 18501  DivRingcdr 18747  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LBasisclbs 19074  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lbs 19075  df-lvec 19103
This theorem is referenced by:  obslbs  20074
  Copyright terms: Public domain W3C validator