MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   GIF version

Theorem lspsolv 19143
Description: If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsolv ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))

Proof of Theorem lspsolv
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3 𝑉 = (Base‘𝑊)
2 lspsolv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsolv.n . . 3 𝑁 = (LSpan‘𝑊)
4 eqid 2622 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2622 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2622 . . 3 (+g𝑊) = (+g𝑊)
7 eqid 2622 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2622 . . 3 {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)} = {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)}
9 lveclmod 19106 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
109adantr 481 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑊 ∈ LMod)
11 simpr1 1067 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝐴𝑉)
12 simpr2 1068 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌𝑉)
13 simpr3 1069 . . . 4 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
1413eldifad 3586 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 19142 . 2 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
164lvecdrng 19105 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
1716ad2antrr 762 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (Scalar‘𝑊) ∈ DivRing)
18 simprl 794 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
1910adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
2012adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
21 eqid 2622 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
22 eqid 2622 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
231, 4, 7, 21, 22lmod0vs 18896 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2419, 20, 23syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2524oveq2d 6666 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)(0g𝑊)))
2611adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴𝑉)
2720snssd 4340 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑌} ⊆ 𝑉)
2826, 27unssd 3789 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑌}) ⊆ 𝑉)
291, 3lspssv 18983 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3019, 28, 29syl2anc 693 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3130ssdifssd 3748 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)) ⊆ 𝑉)
3213adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3331, 32sseldd 3604 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋𝑉)
341, 6, 22lmod0vrid 18894 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3519, 33, 34syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3625, 35eqtrd 2656 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = 𝑋)
3736, 32eqeltrd 2701 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3837eldifbd 3587 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
39 simprr 796 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
40 oveq1 6657 . . . . . . . . . . 11 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑟( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4140oveq2d 6666 . . . . . . . . . 10 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
4241eleq1d 2686 . . . . . . . . 9 (𝑟 = (0g‘(Scalar‘𝑊)) → ((𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) ↔ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4339, 42syl5ibcom 235 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4443necon3bd 2808 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) → 𝑟 ≠ (0g‘(Scalar‘𝑊))))
4538, 44mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ≠ (0g‘(Scalar‘𝑊)))
46 eqid 2622 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
47 eqid 2622 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2622 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
495, 21, 46, 47, 48drnginvrl 18766 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5017, 18, 45, 49syl3anc 1326 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5150oveq1d 6665 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
525, 21, 48drnginvrcl 18764 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
5317, 18, 45, 52syl3anc 1326 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
541, 4, 7, 5, 46lmodvsass 18888 . . . . 5 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
5519, 53, 18, 20, 54syl13anc 1328 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
561, 4, 7, 47lmodvs1 18891 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5719, 20, 56syl2anc 693 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5851, 55, 573eqtr3d 2664 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) = 𝑌)
5933snssd 4340 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑋} ⊆ 𝑉)
6026, 59unssd 3789 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ 𝑉)
611, 2, 3lspcl 18976 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
6219, 60, 61syl2anc 693 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
631, 4, 7, 5lmodvscl 18880 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
6419, 18, 20, 63syl3anc 1326 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
65 eqid 2622 . . . . . . 7 (-g𝑊) = (-g𝑊)
661, 6, 65lmodvpncan 18916 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
6719, 64, 33, 66syl3anc 1326 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
681, 6lmodcom 18909 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
6919, 64, 33, 68syl3anc 1326 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
70 ssun1 3776 . . . . . . . . . 10 𝐴 ⊆ (𝐴 ∪ {𝑋})
7170a1i 11 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴 ⊆ (𝐴 ∪ {𝑋}))
721, 3lspss 18984 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉𝐴 ⊆ (𝐴 ∪ {𝑋})) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7319, 60, 71, 72syl3anc 1326 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7473, 39sseldd 3604 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
7569, 74eqeltrd 2701 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
761, 3lspssid 18985 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7719, 60, 76syl2anc 693 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
78 snidg 4206 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
79 elun2 3781 . . . . . . . 8 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8033, 78, 793syl 18 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8177, 80sseldd 3604 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8265, 2lssvsubcl 18944 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})) ∧ 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8319, 62, 75, 81, 82syl22anc 1327 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8467, 83eqeltrrd 2702 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
854, 7, 5, 2lssvscl 18955 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8619, 62, 53, 84, 85syl22anc 1327 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8758, 86eqeltrrd 2702 . 2 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8815, 87rexlimddv 3035 1 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cdif 3571  cun 3572  wss 3574  {csn 4177  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  -gcsg 17424  1rcur 18501  invrcinvr 18671  DivRingcdr 18747  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  lssacsex  19144  lspsnat  19145  lsppratlem1  19147  lsppratlem3  19149  lsppratlem4  19150  lbsextlem4  19161  lindsenlbs  33404
  Copyright terms: Public domain W3C validator