Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsenlbs Structured version   Visualization version   GIF version

Theorem lindsenlbs 33404
Description: A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsenlbs (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))

Proof of Theorem lindsenlbs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1066 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
2 drngring 18754 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 eqid 2622 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
43frlmlmod 20093 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
52, 4sylan 488 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2622 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
76linds1 20149 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
8 eqid 2622 . . . . . . 7 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
96, 8lspssv 18983 . . . . . 6 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
105, 7, 9syl2an 494 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
11103impa 1259 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1211adantr 481 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
13 bren2 7986 . . . . . . 7 (𝑋𝐼 ↔ (𝑋𝐼 ∧ ¬ 𝑋𝐼))
1413simprbi 480 . . . . . 6 (𝑋𝐼 → ¬ 𝑋𝐼)
15 snfi 8038 . . . . . . . . . . . 12 {𝑦} ∈ Fin
16 simp2 1062 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝐼 ∈ Fin)
17 lindsdom 33403 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
18 domfi 8181 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑋𝐼) → 𝑋 ∈ Fin)
1916, 17, 18syl2anc 693 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ Fin)
20 unfi 8227 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ 𝑋 ∈ Fin) → ({𝑦} ∪ 𝑋) ∈ Fin)
2115, 19, 20sylancr 695 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ∈ Fin)
2221adantr 481 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ({𝑦} ∪ 𝑋) ∈ Fin)
23 vex 3203 . . . . . . . . . . . . . 14 𝑦 ∈ V
2423snss 4316 . . . . . . . . . . . . 13 (𝑦𝑋 ↔ {𝑦} ⊆ 𝑋)
256, 8lspssid 18985 . . . . . . . . . . . . . . . 16 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
265, 7, 25syl2an 494 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
27263impa 1259 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
2827sseld 3602 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑦𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
2924, 28syl5bir 233 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ⊆ 𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
3029con3dimp 457 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ {𝑦} ⊆ 𝑋)
31 nsspssun 3857 . . . . . . . . . . 11 (¬ {𝑦} ⊆ 𝑋𝑋 ⊊ ({𝑦} ∪ 𝑋))
3230, 31sylib 208 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ⊊ ({𝑦} ∪ 𝑋))
33 php3 8146 . . . . . . . . . 10 ((({𝑦} ∪ 𝑋) ∈ Fin ∧ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3422, 32, 33syl2anc 693 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3534adantrl 752 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
36 simpl1 1064 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑅 ∈ DivRing)
37 simpl2 1065 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝐼 ∈ Fin)
38 snssi 4339 . . . . . . . . . . . 12 (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
3938adantr 481 . . . . . . . . . . 11 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4073ad2ant3 1084 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
41 unss 3787 . . . . . . . . . . . 12 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) ↔ ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4241biimpi 206 . . . . . . . . . . 11 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4339, 40, 42syl2anr 495 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
44 simpr 477 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4528con3dimp 457 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦𝑋)
46 difsn 4328 . . . . . . . . . . . . . . . . . 18 𝑦𝑋 → (𝑋 ∖ {𝑦}) = 𝑋)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑋 ∖ {𝑦}) = 𝑋)
4847fveq2d 6195 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4944, 48neleqtrrd 2723 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5049adantlr 751 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
51 difsnid 4341 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → ((𝑋 ∖ {𝑧}) ∪ {𝑧}) = 𝑋)
5251fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑋 → ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
5352eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5453notbid 308 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5554biimparc 504 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
5655adantll 750 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
573frlmsca 20097 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
58 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
5957, 58eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
60 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
6160islvec 19104 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
625, 59, 61sylanbrc 698 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
63623adant3 1081 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LVec)
6463ad4antr 768 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑅 freeLMod 𝐼) ∈ LVec)
657ssdifssd 3748 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
66653ad2ant3 1084 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
6766ad4antr 768 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
68 simp-4r 807 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))
69 difundir 3880 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∖ {𝑧}) ∪ (𝑋 ∖ {𝑧}))
7069equncomi 3759 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧}))
71 elsni 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ {𝑦} → 𝑧 = 𝑦)
7271eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ {𝑦} → (𝑧𝑋𝑦𝑋))
7372notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑦} → (¬ 𝑧𝑋 ↔ ¬ 𝑦𝑋))
7445, 73syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ {𝑦} → ¬ 𝑧𝑋))
7574con2d 129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧𝑋 → ¬ 𝑧 ∈ {𝑦}))
7675imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ {𝑦})
77 difsn 4328 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {𝑦} → ({𝑦} ∖ {𝑧}) = {𝑦})
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ({𝑦} ∖ {𝑧}) = {𝑦})
7978uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8070, 79syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8180fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
8281eleq2d 2687 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8382adantllr 755 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8483biimpa 501 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
85 drngnzr 19262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
8685adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
8757, 86eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
885, 87jca 554 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
8988anim1i 592 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
90893impa 1259 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
918, 60lindsind2 20158 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
92913expa 1265 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9390, 92sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9493ad5ant14 1302 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9584, 94eldifd 3585 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))
96 eqid 2622 . . . . . . . . . . . . . . . . . 18 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
976, 96, 8lspsolv 19143 . . . . . . . . . . . . . . . . 17 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ ((𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9864, 67, 68, 95, 97syl13anc 1328 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9956, 98mtand 691 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
10099ralrimiva 2966 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
101 ralunb 3794 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
102 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦𝑧 = 𝑦)
103 sneq 4187 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → {𝑧} = {𝑦})
104103difeq2d 3728 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∪ 𝑋) ∖ {𝑦}))
105 uncom 3757 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑦} ∪ 𝑋) = (𝑋 ∪ {𝑦})
106105difeq1i 3724 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = ((𝑋 ∪ {𝑦}) ∖ {𝑦})
107 difun2 4048 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∪ {𝑦}) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
108106, 107eqtri 2644 . . . . . . . . . . . . . . . . . . . . 21 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
109104, 108syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (𝑋 ∖ {𝑦}))
110109fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
111102, 110eleq12d 2695 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
112111notbid 308 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
11323, 112ralsn 4222 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
114113anbi1i 731 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
115101, 114bitri 264 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11650, 100, 115sylanbrc 698 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
117116ex 450 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11863ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LVec)
119 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ↔ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
120119biimpi 206 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
121120adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
12238, 7, 42syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1231223ad2antl3 1225 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
124123sselda 3603 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
125124adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
126 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
127 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
128 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
1296, 60, 126, 127, 128, 8lspsnvs 19114 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
130118, 121, 125, 129syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
131130sseq1d 3632 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
13253adant3 1081 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LMod)
133132ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LMod)
134 df-3an 1039 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ↔ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
135122ssdifssd 3748 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1366, 96, 8lspcl 18976 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1375, 135, 136syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
138137anassrs 680 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
139134, 138sylanb 489 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
140139ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
141 eldifi 3732 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
142141adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
1436, 60, 126, 127lmodvscl 18880 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
144133, 142, 125, 143syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
1456, 96, 8, 133, 140, 144lspsnel5 18995 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
146132ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑅 freeLMod 𝐼) ∈ LMod)
147139adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1486, 96, 8, 146, 147, 124lspsnel5 18995 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
149148adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
150131, 145, 1493bitr4rd 301 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
151150notbid 308 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
152151biimpd 219 . . . . . . . . . . . . . 14 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
153152ralrimdva 2969 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
154153ralimdva 2962 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
155117, 154syld 47 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
156155impr 649 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
157 ovex 6678 . . . . . . . . . . 11 (𝑅 freeLMod 𝐼) ∈ V
1586, 126, 8, 60, 127, 128islinds2 20152 . . . . . . . . . . 11 ((𝑅 freeLMod 𝐼) ∈ V → (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))))
159157, 158ax-mp 5 . . . . . . . . . 10 (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
16043, 156, 159sylanbrc 698 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
161 lindsdom 33403 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
16236, 37, 160, 161syl3anc 1326 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
163 sdomdomtr 8093 . . . . . . . 8 ((𝑋 ≺ ({𝑦} ∪ 𝑋) ∧ ({𝑦} ∪ 𝑋) ≼ 𝐼) → 𝑋𝐼)
16435, 162, 163syl2anc 693 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋𝐼)
165164stoic1a 1697 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
16614, 165sylan2 491 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
167 iman 440 . . . . 5 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ↔ ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
168166, 167sylibr 224 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
169168ssrdv 3609 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (Base‘(𝑅 freeLMod 𝐼)) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
17012, 169eqssd 3620 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼)))
171 eqid 2622 . . 3 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
1726, 171, 8islbs4 20171 . 2 (𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ↔ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼))))
1731, 170, 172sylanbrc 698 1 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Ringcrg 18547  DivRingcdr 18747  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LBasisclbs 19074  LVecclvec 19102  NzRingcnzr 19257   freeLMod cfrlm 20090  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-mri 16248  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lbs 19075  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-nzr 19258  df-dsmm 20076  df-frlm 20091  df-uvc 20122  df-lindf 20145  df-linds 20146
This theorem is referenced by:  matunitlindflem2  33406
  Copyright terms: Public domain W3C validator