![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgplem | Structured version Visualization version GIF version |
Description: Lemma for mgpbas 18495. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgplem.2 | ⊢ 𝐸 = Slot 𝑁 |
mgplem.3 | ⊢ 𝑁 ∈ ℕ |
mgplem.4 | ⊢ 𝑁 ≠ 2 |
Ref | Expression |
---|---|
mgplem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mgplem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 15883 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | mgplem.4 | . . . 4 ⊢ 𝑁 ≠ 2 | |
5 | 1, 2 | ndxarg 15882 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
6 | plusgndx 15976 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
7 | 5, 6 | neeq12i 2860 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (+g‘ndx) ↔ 𝑁 ≠ 2) |
8 | 4, 7 | mpbir 221 | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
9 | 3, 8 | setsnid 15915 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
10 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2622 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpval 18492 | . . 3 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) |
13 | 12 | fveq2i 6194 | . 2 ⊢ (𝐸‘𝑀) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
14 | 9, 13 | eqtr4i 2647 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ≠ wne 2794 〈cop 4183 ‘cfv 5888 (class class class)co 6650 ℕcn 11020 2c2 11070 ndxcnx 15854 sSet csts 15855 Slot cslot 15856 +gcplusg 15941 .rcmulr 15942 mulGrpcmgp 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-sets 15864 df-plusg 15954 df-mgp 18490 |
This theorem is referenced by: mgpbas 18495 mgpsca 18496 mgptset 18497 mgpds 18499 |
Copyright terms: Public domain | W3C validator |