| Step | Hyp | Ref
| Expression |
| 1 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝜑) |
| 2 | | ivthicc.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (𝐴[,]𝐵)) |
| 3 | | ivthicc.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | ivthicc.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | | elicc2 12238 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵))) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵))) |
| 7 | 2, 6 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵)) |
| 8 | 7 | simp1d 1073 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 9 | 8 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ) |
| 10 | | ivthicc.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (𝐴[,]𝐵)) |
| 11 | | elicc2 12238 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵))) |
| 12 | 3, 4, 11 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵))) |
| 13 | 10, 12 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵)) |
| 14 | 13 | simp1d 1073 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 15 | 14 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ) |
| 16 | | ivthicc.8 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 17 | 16 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
| 18 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
| 19 | 18 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
| 20 | 19 | rspcv 3305 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ → (𝐹‘𝑀) ∈ ℝ)) |
| 21 | 2, 17, 20 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (𝐹‘𝑥) = (𝐹‘𝑁)) |
| 23 | 22 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑁) ∈ ℝ)) |
| 24 | 23 | rspcv 3305 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ → (𝐹‘𝑁) ∈ ℝ)) |
| 25 | 10, 17, 24 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 26 | | iccssre 12255 |
. . . . . . . . 9
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ℝ) |
| 27 | 21, 25, 26 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ℝ) |
| 28 | 27 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → 𝑦 ∈ ℝ) |
| 29 | 28 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ) |
| 30 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁) |
| 31 | 7 | simp2d 1074 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≤ 𝑀) |
| 32 | 13 | simp3d 1075 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ 𝐵) |
| 33 | | iccss 12241 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝑀 ∧ 𝑁 ≤ 𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵)) |
| 34 | 3, 4, 31, 32, 33 | syl22anc 1327 |
. . . . . . . 8
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵)) |
| 35 | | ivthicc.5 |
. . . . . . . 8
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| 36 | 34, 35 | sstrd 3613 |
. . . . . . 7
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷) |
| 37 | 36 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷) |
| 38 | | ivthicc.7 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| 39 | 38 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷–cn→ℂ)) |
| 40 | 34 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 41 | 40, 16 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
| 42 | 1, 41 | sylan 488 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹‘𝑥) ∈ ℝ) |
| 43 | | elicc2 12238 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)))) |
| 44 | 21, 25, 43 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)))) |
| 45 | 44 | biimpa 501 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
| 46 | | 3simpc 1060 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁)) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
| 47 | 45, 46 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
| 48 | 47 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
| 49 | 9, 15, 29, 30, 37, 39, 42, 48 | ivthle 23225 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹‘𝑧) = 𝑦) |
| 50 | 36 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑀[,]𝑁)) → 𝑧 ∈ 𝐷) |
| 51 | | cncff 22696 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐷–cn→ℂ) → 𝐹:𝐷⟶ℂ) |
| 52 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷) |
| 53 | 38, 51, 52 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝐷) |
| 54 | | fnfvelrn 6356 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝐹‘𝑧) ∈ ran 𝐹) |
| 55 | 53, 54 | sylan 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐹‘𝑧) ∈ ran 𝐹) |
| 56 | | eleq1 2689 |
. . . . . . . 8
⊢ ((𝐹‘𝑧) = 𝑦 → ((𝐹‘𝑧) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹)) |
| 57 | 55, 56 | syl5ibcom 235 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
| 58 | 50, 57 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
| 59 | 58 | rexlimdva 3031 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
| 60 | 1, 49, 59 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹) |
| 61 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) |
| 62 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁) |
| 63 | 62 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) = (𝐹‘𝑁)) |
| 64 | 63 | oveq2d 6666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = ((𝐹‘𝑀)[,](𝐹‘𝑁))) |
| 65 | 21 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ*) |
| 66 | 65 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) ∈
ℝ*) |
| 67 | | iccid 12220 |
. . . . . . . . 9
⊢ ((𝐹‘𝑀) ∈ ℝ* → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = {(𝐹‘𝑀)}) |
| 68 | 66, 67 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑀)) = {(𝐹‘𝑀)}) |
| 69 | 64, 68 | eqtr3d 2658 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹‘𝑀)[,](𝐹‘𝑁)) = {(𝐹‘𝑀)}) |
| 70 | 61, 69 | eleqtrd 2703 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹‘𝑀)}) |
| 71 | | elsni 4194 |
. . . . . 6
⊢ (𝑦 ∈ {(𝐹‘𝑀)} → 𝑦 = (𝐹‘𝑀)) |
| 72 | 70, 71 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹‘𝑀)) |
| 73 | 35, 2 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝐷) |
| 74 | | fnfvelrn 6356 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐷 ∧ 𝑀 ∈ 𝐷) → (𝐹‘𝑀) ∈ ran 𝐹) |
| 75 | 53, 73, 74 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
| 76 | 75 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → (𝐹‘𝑀) ∈ ran 𝐹) |
| 77 | 72, 76 | eqeltrd 2701 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹) |
| 78 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝜑) |
| 79 | 14 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 80 | 8 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 81 | 28 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ) |
| 82 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
| 83 | 13 | simp2d 1074 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
| 84 | 7 | simp3d 1075 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ 𝐵) |
| 85 | | iccss 12241 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝑁 ∧ 𝑀 ≤ 𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵)) |
| 86 | 3, 4, 83, 84, 85 | syl22anc 1327 |
. . . . . . . 8
⊢ (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵)) |
| 87 | 86, 35 | sstrd 3613 |
. . . . . . 7
⊢ (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷) |
| 88 | 87 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷) |
| 89 | 38 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷–cn→ℂ)) |
| 90 | 86 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 91 | 90, 16 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
| 92 | 78, 91 | sylan 488 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
| 93 | 47 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹‘𝑀) ≤ 𝑦 ∧ 𝑦 ≤ (𝐹‘𝑁))) |
| 94 | 79, 80, 81, 82, 88, 89, 92, 93 | ivthle2 23226 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹‘𝑧) = 𝑦) |
| 95 | 87 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁[,]𝑀)) → 𝑧 ∈ 𝐷) |
| 96 | 95, 57 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
| 97 | 96 | rexlimdva 3031 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹‘𝑧) = 𝑦 → 𝑦 ∈ ran 𝐹)) |
| 98 | 78, 94, 97 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹) |
| 99 | 8, 14 | lttri4d 10178 |
. . . . 5
⊢ (𝜑 → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
| 100 | 99 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
| 101 | 60, 77, 98, 100 | mpjao3dan 1395 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁))) → 𝑦 ∈ ran 𝐹) |
| 102 | 101 | ex 450 |
. 2
⊢ (𝜑 → (𝑦 ∈ ((𝐹‘𝑀)[,](𝐹‘𝑁)) → 𝑦 ∈ ran 𝐹)) |
| 103 | 102 | ssrdv 3609 |
1
⊢ (𝜑 → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ran 𝐹) |