MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Visualization version   GIF version

Theorem ivthicc 23227
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1 (𝜑𝐴 ∈ ℝ)
ivthicc.2 (𝜑𝐵 ∈ ℝ)
ivthicc.3 (𝜑𝑀 ∈ (𝐴[,]𝐵))
ivthicc.4 (𝜑𝑁 ∈ (𝐴[,]𝐵))
ivthicc.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivthicc.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivthicc.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
Assertion
Ref Expression
ivthicc (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ivthicc
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝜑)
2 ivthicc.3 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐴[,]𝐵))
3 ivthicc.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 ivthicc.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 elicc2 12238 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
63, 4, 5syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
72, 6mpbid 222 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵))
87simp1d 1073 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
98ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
10 ivthicc.4 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐴[,]𝐵))
11 elicc2 12238 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
123, 4, 11syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
1310, 12mpbid 222 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵))
1413simp1d 1073 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1514ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
16 ivthicc.8 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1716ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
18 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1918eleq1d 2686 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
2019rspcv 3305 . . . . . . . . . 10 (𝑀 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
212, 17, 20sylc 65 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℝ)
22 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2322eleq1d 2686 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
2423rspcv 3305 . . . . . . . . . 10 (𝑁 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑁) ∈ ℝ))
2510, 17, 24sylc 65 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ)
26 iccssre 12255 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2721, 25, 26syl2anc 693 . . . . . . . 8 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2827sselda 3603 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ℝ)
2928adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ)
30 simpr 477 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
317simp2d 1074 . . . . . . . . 9 (𝜑𝐴𝑀)
3213simp3d 1075 . . . . . . . . 9 (𝜑𝑁𝐵)
33 iccss 12241 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑀𝑁𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
343, 4, 31, 32, 33syl22anc 1327 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
35 ivthicc.5 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3634, 35sstrd 3613 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷)
3736ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷)
38 ivthicc.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
3938ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷cn→ℂ))
4034sselda 3603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵))
4140, 16syldan 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
421, 41sylan 488 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
43 elicc2 12238 . . . . . . . . . 10 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4421, 25, 43syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4544biimpa 501 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
46 3simpc 1060 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4745, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4847adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
499, 15, 29, 30, 37, 39, 42, 48ivthle 23225 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦)
5036sselda 3603 . . . . . . 7 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → 𝑧𝐷)
51 cncff 22696 . . . . . . . . . 10 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
52 ffn 6045 . . . . . . . . . 10 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
5338, 51, 523syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐷)
54 fnfvelrn 6356 . . . . . . . . 9 ((𝐹 Fn 𝐷𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
5553, 54sylan 488 . . . . . . . 8 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
56 eleq1 2689 . . . . . . . 8 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
5755, 56syl5ibcom 235 . . . . . . 7 ((𝜑𝑧𝐷) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5850, 57syldan 487 . . . . . 6 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5958rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
601, 49, 59sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹)
61 simplr 792 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)))
62 simpr 477 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
6362fveq2d 6195 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) = (𝐹𝑁))
6463oveq2d 6666 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = ((𝐹𝑀)[,](𝐹𝑁)))
6521rexrd 10089 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ*)
6665ad2antrr 762 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ℝ*)
67 iccid 12220 . . . . . . . . 9 ((𝐹𝑀) ∈ ℝ* → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6866, 67syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6964, 68eqtr3d 2658 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑁)) = {(𝐹𝑀)})
7061, 69eleqtrd 2703 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹𝑀)})
71 elsni 4194 . . . . . 6 (𝑦 ∈ {(𝐹𝑀)} → 𝑦 = (𝐹𝑀))
7270, 71syl 17 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹𝑀))
7335, 2sseldd 3604 . . . . . . 7 (𝜑𝑀𝐷)
74 fnfvelrn 6356 . . . . . . 7 ((𝐹 Fn 𝐷𝑀𝐷) → (𝐹𝑀) ∈ ran 𝐹)
7553, 73, 74syl2anc 693 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
7675ad2antrr 762 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ran 𝐹)
7772, 76eqeltrd 2701 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹)
78 simpll 790 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝜑)
7914ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
808ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
8128adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ)
82 simpr 477 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
8313simp2d 1074 . . . . . . . . 9 (𝜑𝐴𝑁)
847simp3d 1075 . . . . . . . . 9 (𝜑𝑀𝐵)
85 iccss 12241 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑁𝑀𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
863, 4, 83, 84, 85syl22anc 1327 . . . . . . . 8 (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
8786, 35sstrd 3613 . . . . . . 7 (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷)
8887ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷)
8938ad2antrr 762 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷cn→ℂ))
9086sselda 3603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵))
9190, 16syldan 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9278, 91sylan 488 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9347adantr 481 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
9479, 80, 81, 82, 88, 89, 92, 93ivthle2 23226 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦)
9587sselda 3603 . . . . . . 7 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → 𝑧𝐷)
9695, 57syldan 487 . . . . . 6 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9796rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9878, 94, 97sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹)
998, 14lttri4d 10178 . . . . 5 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10099adantr 481 . . . 4 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10160, 77, 98, 100mpjao3dan 1395 . . 3 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ran 𝐹)
102101ex 450 . 2 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) → 𝑦 ∈ ran 𝐹))
103102ssrdv 3609 1 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  {csn 4177   class class class wbr 4653  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  *cxr 10073   < clt 10074  cle 10075  [,]cicc 12178  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  evthicc2  23229
  Copyright terms: Public domain W3C validator