MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   GIF version

Theorem xadddi 12125
Description: Distributive property for extended real addition and multiplication. Like xaddass 12079, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 12124 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2 simpl2 1065 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ*)
3 simpl3 1066 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ*)
4 xaddcl 12070 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
52, 3, 4syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
6 xmul02 12098 . . . . 5 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
75, 6syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = 0)
8 0xr 10086 . . . . 5 0 ∈ ℝ*
9 xaddid1 12072 . . . . 5 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
108, 9ax-mp 5 . . . 4 (0 +𝑒 0) = 0
117, 10syl6eqr 2674 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (0 +𝑒 0))
12 simpr 477 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = 𝐴)
1312oveq1d 6665 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 +𝑒 𝐶)))
14 xmul02 12098 . . . . . 6 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
152, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = 0)
1612oveq1d 6665 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐵) = (𝐴 ·e 𝐵))
1715, 16eqtr3d 2658 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐵))
18 xmul02 12098 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
193, 18syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = 0)
2012oveq1d 6665 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 ·e 𝐶) = (𝐴 ·e 𝐶))
2119, 20eqtr3d 2658 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → 0 = (𝐴 ·e 𝐶))
2217, 21oveq12d 6668 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (0 +𝑒 0) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
2311, 13, 223eqtr3d 2664 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 = 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
24 simp1 1061 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ)
2524adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
26 rexneg 12042 . . . . . . 7 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
27 renegcl 10344 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2826, 27eqeltrd 2701 . . . . . 6 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
2925, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒𝐴 ∈ ℝ)
30 simpl2 1065 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
31 simpl3 1066 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐶 ∈ ℝ*)
3224rexrd 10089 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
33 xlt0neg1 12050 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
3534biimpa 501 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 0 < -𝑒𝐴)
36 xadddilem 12124 . . . . 5 (((-𝑒𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < -𝑒𝐴) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3729, 30, 31, 35, 36syl31anc 1329 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)))
3832adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ*)
3930, 31, 4syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
40 xmulneg1 12099 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
4138, 39, 40syl2anc 693 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)))
42 xmulneg1 12099 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
4338, 30, 42syl2anc 693 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵))
44 xmulneg1 12099 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4538, 31, 44syl2anc 693 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒𝐴 ·e 𝐶) = -𝑒(𝐴 ·e 𝐶))
4643, 45oveq12d 6668 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
47 xmulcl 12103 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*)
4838, 30, 47syl2anc 693 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐵) ∈ ℝ*)
49 xmulcl 12103 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
5038, 31, 49syl2anc 693 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e 𝐶) ∈ ℝ*)
51 xnegdi 12078 . . . . . 6 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5248, 50, 51syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-𝑒(𝐴 ·e 𝐵) +𝑒 -𝑒(𝐴 ·e 𝐶)))
5346, 52eqtr4d 2659 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((-𝑒𝐴 ·e 𝐵) +𝑒 (-𝑒𝐴 ·e 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
5437, 41, 533eqtr3d 2664 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → -𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulcl 12103 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
5638, 39, 55syl2anc 693 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ*)
57 xaddcl 12070 . . . . 5 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
5848, 50, 57syl2anc 693 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*)
59 xneg11 12046 . . . 4 (((𝐴 ·e (𝐵 +𝑒 𝐶)) ∈ ℝ* ∧ ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ∈ ℝ*) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6056, 58, 59syl2anc 693 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (-𝑒(𝐴 ·e (𝐵 +𝑒 𝐶)) = -𝑒((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) ↔ (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))))
6154, 60mpbid 222 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 0) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
62 0re 10040 . . 3 0 ∈ ℝ
63 lttri4 10122 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
6462, 24, 63sylancr 695 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 < 𝐴 ∨ 0 = 𝐴𝐴 < 0))
651, 23, 61, 64mpjao3dan 1395 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  *cxr 10073   < clt 10074  -cneg 10267  -𝑒cxne 11943   +𝑒 cxad 11944   ·e cxmu 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947  df-xmul 11948
This theorem is referenced by:  xadddir  12126  xadddi2  12127
  Copyright terms: Public domain W3C validator